A Length Function and Admissible Diagrams for Complex Reflection Groups $G(m, 1, n)$

Himmet Can
Department of Mathematics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
e-mail: can@erciyes.edu.tr

Abstract. In this paper, we introduce a length function for elements of the imprimitive complex reflection group $G(m, 1, n)$ and study its properties. Furthermore, we show that every conjugacy class of $G(m, 1, n)$ can be represented by an admissible diagram. The corresponding results for Weyl groups are well known.

1. Introduction

The imprimitive complex reflection group $G(m, 1, n)$ can be viewed as the generalized symmetric group. Its conjugacy classes have been determined by Kerber [9] and its irreducible representations can, for example, be obtained from the works of Can [1], [2]. In this paper, we introduce a length function for elements of $G(m, 1, n)$ and study its properties. Furthermore, in an analogous way to Carter [6], we show that every conjugacy class of $G(m, 1, n)$ can be represented by an admissible diagram. We refer the reader to [3] and [7] for much of the undefined terminology and quoted results.

Let V be a complex vector space of dimension n. A reflection in V is a linear transformation of V of finite order with exactly $(n-1)$ eigenvalues equal to 1 . A reflection group G in V is a finite group generated by reflections in V. The dimension n of V is called the rank of G. For each non-zero vector $\alpha \in V$, let w_{α} be a reflection in V of order $m>1$. Then there is a primitive m-th root of unity ξ such that $w_{\alpha}(v)=v-(1-\xi) \frac{(v, \alpha)}{(\alpha, \alpha)} \alpha$ for all $v \in V$. Thus $w_{\alpha}(\alpha)=\xi \alpha$ and $w_{\alpha}(v)=v$ if $v \in\langle\alpha\rangle^{\perp}$, where $\langle\alpha\rangle^{\perp}$ is the orthogonal complement of $\langle\alpha\rangle$ with respect to the given unitary inner product. As a convention, throughout this paper, we assume that ξ is a primitive m-th root of unity. Define $o_{G}: V \rightarrow \mathbf{N}$ by $o_{G}(v)=\left|G_{\langle v\rangle^{\perp}}\right|$ $(v \in V)$. Then $o_{G}(v)>1$ if and only if v is a root of G. In this case, $o_{G}(v)$ is the order of the cyclic group generated by the reflections in G with root v. If α is a root of G then the number $o_{G}(\alpha)$ is called the order of α. Let \mathcal{S}_{n} be the group of all $n \times n$ permutation matrices, and let $A(m, 1, n)$ be the group of all diagonal $n \times n$

[^0]matrices with $\xi^{s_{i}}, s_{i} \in \mathbf{Z}$ in the (i, i) position. We let $G(m, 1, n)=A(m, 1, n) \times \mathcal{S}_{n}$ (semi-direct product). $G(m, 1, n)$ is an imprimitive complex reflection group in V generated by unitary reflections, and $G(1,1, n)=W\left(A_{n-1}\right)$ (Weyl group of type A_{n-1}) and $G(2,1, n)=W\left(C_{n}\right)$ (Weyl group of type C_{n}). The group $G(m, 1, n)$ has the following presentation (see [8]):
\[

$$
\begin{aligned}
G(m, 1, n)= & \left\langle r_{1}, \cdots, r_{n-1}, w_{1}, \cdots, w_{n}\right| r_{i}^{2}=\left(r_{i} r_{i+1}\right)^{3}=\left(r_{i} r_{j}\right)^{2}=1 \\
& |i-j| \geq 2, w_{i}^{m}=1, w_{i} w_{j}=w_{j} w_{i}, r_{i} w_{i}=w_{i+1} r_{i}, r_{i} w_{j}=w_{j} r_{i} \\
& j \neq i, i+1\rangle
\end{aligned}
$$
\]

2. The length function

Let $\Phi(m, p, n)(p=1, m)$ be an imprimitive root system with simple system $\pi(m, p, n)=(B, \theta)$, where

$$
B= \begin{cases}\left\{\alpha_{i}=e_{i}-e_{i+1}(i=1, \cdots, n-1), \alpha_{n}=e_{n}\right\} & \text { if } p=1 \\ \left\{\beta_{i}=e_{i}-e_{i+1}(i=1, \cdots, n-1), \beta_{n}=e_{n-1}-\xi e_{n}\right\} & \text { if } p=m\end{cases}
$$

Then the Cohen diagrams for $\Phi(m, 1, n)$ and $\Phi(m, m, n)$ are respectively

where the node corresponding to $\alpha_{i}(i=1, \cdots, n)$ is denoted by i and

where the node corresponding to $\beta_{i}(i=1, \cdots, n)$ is denoted by i.

A web is a graph of the form

Let $W=G(m, 1, n)$ denote the imprimitive reflection group corresponding to $\Phi=\Phi(m, 1, n)$. Now each element w in W can be expressed as a product of reflections $w=w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}}$, where $a_{i} \in \Phi$ and $s_{i} \in\{1, \cdots, m-1\}$. The length of w, denoted by $l(w)$ is the smallest value of $\sum_{i=1}^{k} s_{i}$ in any such expression for w. (Here, if $o_{W}\left(a_{i}\right)=2$ then $s_{i}=1$, and if $o_{W}\left(a_{i}\right)=m$ then $s_{i} \in\{1, \cdots, m-1\}$.) By convention, $l(1)=0$. Clearly $l(w)=1$ if and only if $w=w_{a}$ where $a \in \Phi$. It is also clear that if $w=w_{a}^{s}$ with $o_{W}(a)=m$ and $s \in\{1, \cdots, m-1\}$, then $l(w)=s$. We say that w is a product of k reflections if $l(w)=\sum_{i=1}^{k} s_{i}$. Any element $\sigma \in W$ may
be written uniquely (up to reordering) as the product of disjoint cycles $\sigma=\theta_{1} \cdots \theta_{t}$, where

$$
\theta_{i}=\left(\begin{array}{cccc}
b_{i 1} & b_{i 2} & \cdots & b_{i k_{i}} \\
\xi^{s_{i 1}} b_{i 2} & \xi^{s_{i 2}} b_{i 3} & \cdots & \xi^{s_{i k_{i}} b_{i 1}}
\end{array}\right)
$$

$b_{i j} \in\{1, \cdots, n\}, s_{i j} \in\{1, \cdots, m\}, k_{i}$ is the length of the cycle $\theta_{i}, i=1, \cdots, t$. Let $f\left(\theta_{i}\right)=\sum_{j=1}^{k_{i}} s_{i j}$, and put $f(\sigma)=\sum_{i=1}^{t} f\left(\theta_{i}\right)$. Define $a_{p q}(\sigma)$ to be the number of cycles θ_{i} of σ of length q such that $f\left(\theta_{i}\right) \equiv p(\bmod m)$ for $1 \leq p \leq m, 1 \leq q \leq n$. The $m \times n$ matrix $\left(a_{p q}(\sigma)\right)$ is called the type of σ, denoted by $T y(\sigma)$ (see [10]). Then it is well known that $\sigma, \pi \in W$ are conjugate in W if and only if $T y(\sigma)=T y(\pi)$ (see [9]).

Lemma 2.1. If $\sigma, \pi \in W$ are conjugate in W, then $l(\sigma)=l(\pi)$.
Proof. Let $\sigma=w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}}$, where $a_{i} \in \Phi$ and $s_{i} \in\{1, \cdots, m-1\}$. Since σ is conjugate in W to $\pi, \pi=w \sigma w^{-1}$ for some $w \in W$. But $w \sigma w^{-1}=w_{b_{1}}^{s_{1}} \cdots w_{b_{k}}^{s_{k}}$ where $b_{i}=w\left(a_{i}\right)$ implies that $l(\sigma)=\sum_{i=1}^{k} s_{i}=l(\pi)$.

The above lemma says that two conjugate elements in W have the same length and are also product of the same number of reflections. The lemma below is a well-known property of reflection groups (see [11]).

Lemma 2.2. Let G be a reflection group in an n-dimensional complex vector space V. If $g \in G$ and U is the subspace of V composed of all vectors fixed by g, then g is a product of reflections corresponding to roots in the orthogonal complement U^{\perp} of U.

Lemma 2.3. Let $w \in W$. Then $l(w)$ is the sum of the powers of eigenvalues of w on V which are not equal to 1 . In particular, w is a product of at most n reflections.

Proof. Suppose that $l(w)=\sum_{i=1}^{k} s_{i}$. Then w is a product of k reflections and has an expression of the form $w=w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}}$, where $a_{i} \in \Phi$ and $s_{i} \in\{1, \cdots, m-1\}$. Now, let $H_{a_{i}}$ be the reflecting hyperplane of a_{i} in V and let

$$
H=H_{a_{1}} \cap H_{a_{2}} \cap \cdots \cap H_{a_{k}}
$$

Then w acts trivially on H and $\operatorname{dim} H \geq n-k$. Thus w has at least $(n-k)$ eigenvalues equal to 1 , and so at most k eigenvalues $\xi^{s_{1}}, \xi^{s_{2}}, \cdots, \xi^{s_{k}}$ which are not equal to 1 , by definition of the reflection. Therefore, the sum of the powers of these eigenvalues $\leq l(w)$.

Conversely, suppose w has k eigenvalues $\xi^{s_{1}}, \xi^{s_{2}}, \cdots, \xi^{s_{k}}$ which are not equal to 1 , where $s_{i} \in\{1, \cdots, m-1\}$. Let U be the subspace of V composed of all vectors fixed by w, and U^{\perp} be the orthogonal subspace. Then at once $\operatorname{dim} U=n-k$ and $\operatorname{dim} U^{\perp}=k$, and by Lemma $2.2 w$ is a product of reflections corresponding to roots in U^{\perp}. Suppose that w fixes some vector in V. Then $k<n$ and so $\operatorname{dim} U^{\perp}<\operatorname{dim} V$. The roots in U^{\perp} form a root system in the subspace they generate which has
dimension less than n, and w is an element of the reflection group associated with this root system. Thus by induction w is a product of at most k reflections, i.e., $w=w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}}$, and so $l(w) \leq \sum_{i=1}^{k} s_{i}$.

Therefore, it suffices to show that if w fixes no non-zero vector in V then w can be expressed as a product of at most n reflections. Now, suppose that $w(v) \neq v$ for all $v \in V \backslash\{0\}$. Then $(w-1) v \neq 0$ for all $v \in V \backslash\{0\}$ and $\operatorname{ker}(w-1)=\{0\}$, and so $w-1$ is invertible.

Let $-(1-\xi) \frac{(v, a)}{(a, a)} a \in V$, where $a \in \Phi$, then there exists $v \in V$ such that

$$
(w-1) v=-(1-\xi) \frac{(v, a)}{(a, a)} a .
$$

Thus $w(v)=v-(1-\xi) \frac{(v, a)}{(a, a)} a=w_{a}(v)$, and so $w_{a}^{s} w(v)=v$,
where $s= \begin{cases}1 & \text { if } o_{W}(a)=2 \\ m-1 & \text { if } o_{W}(a)=m .\end{cases}$
By Lemma $2.2 w_{a}^{s} w$ is a product of reflections corresponding to roots in $\langle v\rangle^{\perp}$. Then $w_{a}^{s} w$ is contained in a reflection group of smaller rank, and so by induction $w_{a}^{s} w$ is a product of at most $n-1$ reflections. Hence, w is a product of at most n reflections, and the proof is complete.

An expression $w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}} \in W$ will be called reduced if $l\left(w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}}\right)=\sum_{i=1}^{k} s_{i}$.

Lemma 2.4. Let $a_{1}, \cdots, a_{k} \in \Phi$ and $s_{i} \in\{1, \cdots, m-1\}$ for $i=1, \cdots, k$. Then $w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}}$ is reduced if and only if a_{1}, \cdots, a_{k} are linearly independent.
Proof. Let $w=w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}}$. Suppose that the expression is reduced. Then by Lemma $2.3 w$ has k eigenvalues not equal to 1 , and so

$$
\operatorname{dim}\left(H_{a_{1}} \cap H_{a_{2}} \cap \cdots \cap H_{a_{k}}\right)=n-k .
$$

(Here, the dimension cannot be larger since w acts as the identity on this subspace.) Thus, it follows that the roots a_{1}, \cdots, a_{k} are linearly independent.

Conversely, suppose that the roots a_{1}, \cdots, a_{k} are linearly independent. Now, consider the subspace $\operatorname{im}(w-1)$, and select a vector $v_{1} \in V$ such that

$$
v_{1} \in H_{a_{2}} \cap \cdots \cap H_{a_{k}} \text { but } v_{1} \notin H_{a_{1}} .
$$

Then $w\left(v_{1}\right)-v_{1}$ is a non-zero multiple of a_{1}. Thus $a_{1} \in \operatorname{im}(w-1)$. Now, select once again a vector $v_{2} \in V$ with

$$
v_{2} \in H_{a_{3}} \cap \cdots \cap H_{a_{k}} \text { but } v_{2} \notin H_{a_{2}} .
$$

Then $w\left(v_{2}\right)-v_{2}=\alpha a_{1}+\beta a_{2}$, where $\alpha, \beta \in \mathbf{C}$ and $\beta \neq 0$. Hence $a_{2} \in \operatorname{im}(w-1)$. Repeating this argument will eventually show that $a_{1}, \cdots, a_{k} \in \operatorname{im}(w-1)$, and so $\operatorname{dim} \operatorname{im}(w-1)=k$. Then w is reduced, for if w has a shorter expression $w=$
$w_{b_{1}}^{\rho_{1}} \cdots w_{b_{l}}^{\rho_{l}}$ with $l<k$ and $\rho_{i} \in\{1, \cdots, m-1\}$, then every element of im $(w-1)$ can be written as a linear combination of b_{1}, \cdots, b_{l} and so $\operatorname{dim} \operatorname{im}(w-1)<k$, which is a contradiction. Furthermore, if w has an expression $w=w_{a_{1}}^{r_{1}} \cdots w_{a_{k}}^{r_{k}}$ with $r_{i} \leq s_{i}$, then $w_{a_{k}}^{\varrho_{k}} \cdots w_{a_{1}}^{\varrho_{1}} w=1$ and $w_{a_{k}}^{\varrho_{k}} \cdots w_{a_{1}}^{\varrho_{1}} w_{a_{1}}^{r_{1}} \cdots w_{a_{k}}^{r_{k}} \neq 1$ where $\varrho_{i}=o_{W}\left(a_{i}\right)-s_{i}$, ($1 \leq i \leq k$), a contradiction.

3. Admissible diagrams

Any element $w=w_{a_{1}}^{s_{1}} \cdots w_{a_{k}}^{s_{k}} \in W$ with $l(w)=\sum_{i=1}^{k} s_{i}$ can be decomposed as follows (see [1]):

$$
w=\tau w_{a_{i+1}}^{s_{i}+1} \cdots w_{a_{k}}^{s_{k}}, \text { where } \tau=w_{a_{1}} \cdots w_{a_{i}} \in W\left(A_{n-1}\right) .
$$

Corresponding to each such decomposition of w, we define a graph Γ. Γ has k nodes, one corresponding to each root a_{1}, \cdots, a_{k} with the value $o_{W}\left(a_{i}\right)$. The nodes corresponding to distinct roots a_{i}, a_{j} are joined by a bond of weight $\left(a_{i}, a_{j}\right)$. If $o_{W}\left(a_{i}\right)=2$, then the number 2 in the node corresponding to the root a_{i} is omitted, as in Cohen [7]. If $w \in W$ has a decomposition with graph Γ, then any conjugate of w also has a decomposition with graph Γ. For if $w=w_{a_{1}} \cdots w_{a_{i}} w_{a_{i+1}}^{s_{i+1}} \cdots w_{a_{k}}^{s_{k}}$, where $w_{a_{1}} \cdots w_{a_{i}} \in W\left(A_{n-1}\right)$, then we have $w^{\prime} w w^{\prime-1}=w_{b_{1}} \cdots w_{b_{i}} w_{b_{i+1}}^{s_{i+1}} \cdots w_{b_{k}}^{s_{k}}$, where $b_{j}=w^{\prime}\left(a_{j}\right)$ for $j=1, \cdots, k$.

Therefore, we say that the graph Γ is associated with this conjugacy class. (Here, we assume that the conjugacy class containing the identity element is represented by the empty graph.) By Lemma 2.4 the nodes of Γ correspond to a set of linearly independent roots.

Now we can give our principal definition.
Definition 3.1 Let Γ be a graph, then Γ is called an admissible diagram if
(i) the nodes of Γ correspond to a set of linearly independent roots of Φ,
(ii) each subgraph of Γ which is a cycle is equivalent to a web.
(A subgraph of Γ in this context is a subset of the nodes, together with the bonds joining the nodes in the subset. A cycle is a graph in which each node is connected to only two other nodes.)
Lemma 3.2. Every admissible diagram associated with a conjugacy class of W is the Cohen (Dynkin) diagram of some reflection subgroup of W.
Proof. Let Γ be such a graph. Let J be a set of roots corresponding to the nodes of Γ. Denote by $W(J)$ the group generated by all reflections $w_{a, o_{W}(a)}$ with $a \in J$, then $W(J)$ is a subgroup of W, so is a finite reflection group. Furthermore, J is linearly independent by definition of the admissible diagram. Thus, by (4.2) of Cohen $[7] \Gamma$ is a root graph. Now, put $S=W(J) J$, define a map $g: S \rightarrow \mathbf{N} \backslash\{1\}$ by $g(a)=o_{W(J)}(a)$ for all $a \in S$, then the pair $\Psi=(S, g)$ is the pre-root system corresponding to J with $W(\Psi)=W(J)$ by 1.2 (ii) of Can [3]. By 1.2 (iii) of Can
[3], the pair $\Psi=(S, g)$ is a root system and so is a subsystem of Φ. Thus, $W(\Psi)$ is the reflection group of Ψ, and so Γ is the Cohen (Dynkin) diagram of the reflection subgroup $W(\Psi)$ of W, as desired.

Here, recall that Γ may be a union of disconnected graphs Γ_{i} say, which satisfy the following: if Γ_{i} contains no web, then Γ_{i} is either of type A_{n} or B_{n}^{m}, and if Γ_{i} does contain a web, then Γ_{i} must be of type D_{n}^{m}.

The present author [3] has presented an algorithm for obtaining the graphs which are Cohen (Dynkin) diagrams of reflection subgroups of W without any reference to extended diagrams. In [4], we also interpreted it as a computer program written using the symbolic computation system Maple. The Cohen (Dynkin) diagrams of all possible reflection subgroups of W are either of the form

$$
\begin{aligned}
& \sum_{i=1}^{m} \sum_{j=1}^{s_{i}} B_{\lambda_{j}^{(i)}}^{m_{i}}+\sum_{j=1}^{s} D_{\mu_{j}}^{m} \text { with } \sum_{j=1}^{s_{1}}\left(\lambda_{j}^{(1)}+1\right)+\sum_{i=2}^{m} \sum_{j=1}^{s_{i}} \lambda_{j}^{(i)}+\sum_{j=1}^{s} \mu_{j}=n \text { or } \\
& \qquad \sum_{i=1}^{m} \sum_{j=1}^{s_{i}} B_{\lambda_{j}^{(i)}}^{m_{i}} \text { with } \sum_{j=1}^{s_{1}}\left(\lambda_{j}^{(1)}+1\right)+\sum_{i=2}^{m} \sum_{j=1}^{s_{i}} \lambda_{j}^{(i)}=n, \\
& \text { where } m_{i}= \begin{cases}1 & \text { if } i=1 \\
m & \text { if } i=2, \cdots, m \text { (see [5]). }\end{cases}
\end{aligned}
$$

We now show that the admissible diagrams can be used to parametrise the conjugacy classes of W.

Theorem 3.3. There is a one-to-one correspondence between conjugacy classes in W and admissible diagrams of the form

$$
\sum_{i=1}^{m}\left(B_{\lambda_{1}^{(i)}}^{m_{i}}+B_{\lambda_{2}^{(i)}}^{m_{i}}+\cdots+B_{\lambda_{s_{i}}^{(i)}}^{m_{i}}\right)
$$

where $\sum_{j=1}^{s_{1}}\left(\lambda_{j}^{(1)}+1\right)+\sum_{i=2}^{m} \sum_{j=1}^{s_{i}} \lambda_{j}^{(i)}=n$ and $m_{i}= \begin{cases}1 & \text { if } i=1 \\ m & \text { if } i=2, \cdots, m .\end{cases}$
Proof. The elements of W operate on the orthonormal basis e_{1}, \cdots, e_{n} of V by permuting the basis vectors and multiplying arbitrary subsets of them by a power of ξ. By ignoring these multiples, each element w of W determines a permutation of $\{1, \cdots, n\}$ which can be expressed in the usual way as a product of disjoint cycles. Let ($k_{1} k_{2} \cdots k_{r}$) be such a cycle which has the following shape

$$
e_{k_{1}} \rightarrow \xi^{p_{1}} e_{k_{2}} \rightarrow \xi^{p_{1}+p_{2}} e_{k_{3}} \rightarrow \cdots \rightarrow \xi^{p_{1}+\cdots+p_{r-1}} e_{k_{r}} \rightarrow \xi^{p_{1}+\cdots+p_{r}} e_{k_{1}}
$$

where $p_{i} \in\{1, \cdots, m\}$. The cycle $\left(k_{1} k_{2} \cdots k_{r}\right)$ is said to be a $\left(\xi^{p}, r\right)$-cycle if $w^{r}\left(e_{k_{1}}\right)=\xi^{p} e_{k_{1}}$, where $\sum_{i=1}^{r} p_{i} \equiv p(\bmod m)$. Then the lengths of the cycles together with their values $\sum p_{i}$ determine the type of w, and two elements of W
are conjugate if and only if they have the same type, as in Kerber [9]. Thus there is a one-to-one correspondence between conjugacy classes and types. Now, consider the $\left(\xi^{p}, r\right)$-cycle

$$
e_{1} \rightarrow e_{2} \rightarrow \cdots \rightarrow e_{r-1} \rightarrow e_{r} \rightarrow \xi^{p} e_{1}
$$

where $p \in\{1, \cdots, m\}$. If $p=m$, then this can be expressed as the product of elements $(12)(23) \cdots(r-1 r)$. These factors form a complete set of simple reflections of the Weyl subgroup of type A_{r-1}, and so this $(1, r)$-cycle, denoted by $[r]$, is represented by an admissible diagram A_{r-1}, as in type A_{n} - see Carter [6]. If $p \in\{1, \cdots, m-1\}$, then this can be expressed as the product of elements $(12)(23) \cdots(r-1 r) w_{r}^{p}$, where w_{r}^{p} changes e_{r} into $\xi^{p} e_{r}$ and fixes all other e_{i}. Thus these factors form a complete set of simple reflections of the reflection subgroup of type B_{r}^{m}, and so this $\left(\xi^{p}, r\right)$-cycle is represented by an admissible diagram B_{r}^{m}.

Now consider an arbitrary element of W, expressed as a product of disjoint $\left(\xi^{p}, r\right)$-cycles. Since disjoint cycles operate on orthogonal subspaces of V, the admissible diagram splits into connected components corresponding to the cycle decomposition, and so has form

$$
\sum_{i=1}^{m}\left(B_{\lambda_{1}^{(i)}}^{m_{i}}+B_{\lambda_{2}^{(i)}}^{m_{i}}+\cdots+B_{\lambda_{s_{i}}^{(i)}}^{m_{i}}\right)
$$

where $\sum_{j=1}^{s_{1}}\left(\lambda_{j}^{(1)}+1\right)+\sum_{i=2}^{m} \sum_{j=1}^{s_{i}} \lambda_{j}^{(i)}=n$ and $m_{i}= \begin{cases}1 & \text { if } i=1 \\ m & \text { if } i=2, \ldots, m,\end{cases}$ as desired.

Remark 3.4. Now, define m partitions $\lambda^{(1)}, \cdots, \lambda^{(m)}$ by

$$
\lambda^{(1)}=\left(\lambda_{1}^{(1)}+1, \cdots, \lambda_{s_{1}}^{(1)}+1\right), \lambda^{(i)}=\left(\lambda_{1}^{(i)}, \cdots, \lambda_{s_{i}}^{(i)}\right) \quad(i=2, \cdots, m)
$$

then there is a one-to-one correspondence between conjugacy classes in W and m sets of partitions $\left(\lambda^{(1)}, \cdots, \lambda^{(m)}\right)$ of n with $\sum_{j=1}^{s_{1}}\left(\lambda_{j}^{(1)}+1\right)+\sum_{i=2}^{m} \sum_{j=1}^{s_{i}} \lambda_{j}^{(i)}=n$ (see Kerber [9]).

If $m=1$, then $W=W\left(A_{n-1}\right)$ (Wely group of type A_{n-1}) and if $m=2$ then $W=W\left(C_{n}\right)$ (Weyl group of type C_{n}), and so by putting $m=1,2$ in Theorem 3.3, we recover the results of Carter [6]. The admissible diagrams given in Theorem 3.3 are not the only ones which could have been taken. We know that W contains a reflection subgroup $G(m, m, n)=W\left(D_{n}^{m}\right)$ (see [7]), and so D_{n}^{m} is an admissible diagram for W. However since the admissible diagrams given in Theorem 3.3 are in one-to-one correspondence with the conjugacy classes of W, we do not need to consider the remainder.

References

[1] H. Can, Representations of the generalized symmetric groups, Contrib. Alg. Geom., 37(2)(1996), 289-307.
[2] H. Can, Representations of the imprimitive complex reflection groups $G(m, 1, n)$, Comm. Algebra, 26(8)(1998), 2371-2393.
[3] H. Can, Some combinatorial results for complex reflection groups, European J. Combin., 19(1998), 901-909.
[4] H. Can and L. Hawkins, A computer program for obtaining subsystems, Ars Combinatoria, 58(2001), 257-269.
[5] H. Can, Subsystems of the complex root systems, Algebra Colloquium, (2004), (to appear).
[6] R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math., 25(1972), 1-59.
[7] A. M. Cohen, Finite complex reflection groups, Ann. Scient. Ec. Norm. Sup., 4(9)(1976), 379-436.
[8] J. W. Davies and A. O. Morris, The Schur multiplier of the generalized symmetric group, J. London Math. Soc., 8(1974), 615-620.
[9] A. Kerber, Representations of Permutation Groups I., Lecture Notes in Mathematics, Springer-Verlag, New York, 240(1971).
[10] E. W. Read, On the finite imprimitive unitary reflection groups, J. Algebra, 45(2)(1977), 439-452.
[11] R. Steinberg, Differential equations invariant under finite reflection groups, Am. Math. Soc. Transl., 112(1964), 392-400.

[^0]: Received February 11, 2004.
 2000 Mathematics Subject Classification: 20F55, 20C30.
 Key words and phrases: reflection groups, length function, admissible diagrams, conjugacy classes.

