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Abstract. In this paper, we introduce a length function for elements of the imprimitive

complex reflection group G(m, 1, n) and study its properties. Furthermore, we show that

every conjugacy class of G(m, 1, n) can be represented by an admissible diagram. The

corresponding results for Weyl groups are well known.

1. Introduction

The imprimitive complex reflection group G(m, 1, n) can be viewed as the gen-
eralized symmetric group. Its conjugacy classes have been determined by Kerber [9]
and its irreducible representations can, for example, be obtained from the works of
Can [1], [2]. In this paper, we introduce a length function for elements of G(m, 1, n)
and study its properties. Furthermore, in an analogous way to Carter [6], we show
that every conjugacy class of G(m, 1, n) can be represented by an admissible dia-
gram. We refer the reader to [3] and [7] for much of the undefined terminology and
quoted results.

Let V be a complex vector space of dimension n. A reflection in V is a linear
transformation of V of finite order with exactly (n − 1) eigenvalues equal to 1.
A reflection group G in V is a finite group generated by reflections in V . The
dimension n of V is called the rank of G. For each non-zero vector α ∈ V , let wα

be a reflection in V of order m > 1. Then there is a primitive m-th root of unity ξ

such that wα(v) = v− (1− ξ) (v,α)
(α,α)α for all v ∈ V . Thus wα(α) = ξα and wα(v) = v

if v ∈ 〈α〉⊥, where 〈α〉⊥ is the orthogonal complement of 〈α〉 with respect to the
given unitary inner product. As a convention, throughout this paper, we assume
that ξ is a primitive m-th root of unity. Define oG : V → N by oG(v) = |G〈v〉⊥ |
(v ∈ V ). Then oG(v) > 1 if and only if v is a root of G. In this case, oG(v) is the
order of the cyclic group generated by the reflections in G with root v. If α is a
root of G then the number oG(α) is called the order of α. Let Sn be the group of all
n × n permutation matrices, and let A(m, 1, n) be the group of all diagonal n × n
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matrices with ξsi , si ∈ Z in the (i, i) position. We let G(m, 1, n) = A(m, 1, n)×Sn

(semi-direct product). G(m, 1, n) is an imprimitive complex reflection group in V
generated by unitary reflections, and G(1, 1, n) = W (An−1) (Weyl group of type
An−1) and G(2, 1, n) = W (Cn) (Weyl group of type Cn). The group G(m, 1, n) has
the following presentation (see [8]):

G(m, 1, n) = 〈r1, · · · , rn−1, w1, · · · , wn | r2
i = (riri+1)3 = (rirj)2 = 1,

|i− j| ≥ 2, wm
i = 1, wiwj = wjwi, riwi = wi+1ri, riwj = wjri,

j 6= i, i + 1〉.

2. The length function

Let Φ(m, p, n) (p = 1, m) be an imprimitive root system with simple system
π(m, p, n) = (B, θ), where

B =

{
{αi = ei − ei+1 (i = 1, · · · , n− 1), αn = en} if p = 1
{βi = ei − ei+1 (i = 1, · · · , n− 1), βn = en−1 − ξen} if p = m.

Then the Cohen diagrams for Φ(m, 1, n) and Φ(m,m, n) are respectively

Bm
n : i

1
i
2

· · · i
n− 1 − 1√

2 i
n
m

where the node corresponding to αi (i = 1, · · · , n) is denoted by i and

Dm
n : i1 i2 · · · in− 2

¢¢
AA

i
n− 1

i
n

6
1+ξ
2

where the node corresponding to βi (i = 1, · · · , n) is denoted by i.

A web is a graph of the form i¢¢
AA

i

i6
1+ξs

2 where s ∈ {1, · · · , m− 1}.

Let W = G(m, 1, n) denote the imprimitive reflection group corresponding to
Φ = Φ(m, 1, n). Now each element w in W can be expressed as a product of
reflections w = ws1

a1
· · ·wsk

ak
, where ai ∈ Φ and si ∈ {1, · · · , m− 1}. The length of

w, denoted by l(w) is the smallest value of
∑k

i=1 si in any such expression for w.
(Here, if oW (ai) = 2 then si = 1, and if oW (ai) = m then si ∈ {1, · · · , m−1}.) By
convention, l(1) = 0. Clearly l(w) = 1 if and only if w = wa where a ∈ Φ. It is also
clear that if w = ws

a with oW (a) = m and s ∈ {1, · · · , m− 1}, then l(w) = s. We
say that w is a product of k reflections if l(w) =

∑k
i=1 si. Any element σ ∈ W may
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be written uniquely (up to reordering) as the product of disjoint cycles σ = θ1 · · · θt,
where

θi =
(

bi1 bi2 · · · biki

ξsi1bi2 ξsi2bi3 · · · ξsiki bi1

)
,

bij ∈ {1, · · · , n}, sij ∈ {1, · · · , m}, ki is the length of the cycle θi, i = 1, · · · , t.

Let f(θi) =
ki∑

j=1

sij , and put f(σ) =
t∑

i=1

f(θi). Define apq(σ) to be the number of

cycles θi of σ of length q such that f(θi) ≡ p (mod m) for 1 ≤ p ≤ m, 1 ≤ q ≤ n.
The m×n matrix (apq(σ)) is called the type of σ, denoted by Ty(σ) (see [10]). Then
it is well known that σ, π ∈ W are conjugate in W if and only if Ty(σ) = Ty(π)
(see [9]).

Lemma 2.1. If σ, π ∈ W are conjugate in W , then l(σ) = l(π).

Proof. Let σ = ws1
a1
· · ·wsk

ak
, where ai ∈ Φ and si ∈ {1, · · · , m − 1}. Since σ is

conjugate in W to π, π = wσw−1 for some w ∈ W . But wσw−1 = ws1
b1
· · ·wsk

bk

where bi = w(ai) implies that l(σ) =
∑k

i=1 si = l(π). ¤
The above lemma says that two conjugate elements in W have the same length

and are also product of the same number of reflections. The lemma below is a
well-known property of reflection groups (see [11]).

Lemma 2.2. Let G be a reflection group in an n-dimensional complex vector space
V . If g ∈ G and U is the subspace of V composed of all vectors fixed by g, then g
is a product of reflections corresponding to roots in the orthogonal complement U⊥

of U .

Lemma 2.3. Let w ∈ W . Then l(w) is the sum of the powers of eigenvalues of w
on V which are not equal to 1. In particular, w is a product of at most n reflections.

Proof. Suppose that l(w) =
∑k

i=1 si. Then w is a product of k reflections and has
an expression of the form w = ws1

a1
· · ·wsk

ak
, where ai ∈ Φ and si ∈ {1, · · · , m− 1}.

Now, let Hai be the reflecting hyperplane of ai in V and let

H = Ha1 ∩Ha2 ∩ · · · ∩Hak
.

Then w acts trivially on H and dim H ≥ n − k. Thus w has at least (n − k)
eigenvalues equal to 1, and so at most k eigenvalues ξs1 , ξs2 , · · · , ξsk which are not
equal to 1, by definition of the reflection. Therefore, the sum of the powers of these
eigenvalues ≤ l(w).

Conversely, suppose w has k eigenvalues ξs1 , ξs2 , · · · , ξsk which are not equal to
1, where si ∈ {1, · · · , m− 1}. Let U be the subspace of V composed of all vectors
fixed by w, and U⊥ be the orthogonal subspace. Then at once dimU = n− k and
dim U⊥ = k, and by Lemma 2.2 w is a product of reflections corresponding to roots
in U⊥. Suppose that w fixes some vector in V . Then k < n and so dim U⊥ < dim V .
The roots in U⊥ form a root system in the subspace they generate which has
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dimension less than n, and w is an element of the reflection group associated with
this root system. Thus by induction w is a product of at most k reflections, i.e.,
w = ws1

a1
· · ·wsk

ak
, and so l(w) ≤ ∑k

i=1 si.
Therefore, it suffices to show that if w fixes no non-zero vector in V then w can

be expressed as a product of at most n reflections. Now, suppose that w(v) 6= v for
all v ∈ V \ {0}. Then (w − 1)v 6= 0 for all v ∈ V \ {0} and ker(w − 1) = {0}, and
so w − 1 is invertible.

Let −(1− ξ) (v,a)
(a,a)a ∈ V , where a ∈ Φ, then there exists v ∈ V such that

(w − 1)v = −(1− ξ)
(v, a)
(a, a)

a.

Thus w(v) = v − (1− ξ) (v,a)
(a,a)a = wa(v), and so ws

aw(v) = v,

where s =

{
1 if oW (a) = 2
m− 1 if oW (a) = m.

By Lemma 2.2 ws
aw is a product of reflections corresponding to roots in 〈v〉⊥.

Then ws
aw is contained in a reflection group of smaller rank, and so by induction

ws
aw is a product of at most n− 1 reflections. Hence, w is a product of at most n

reflections, and the proof is complete. ¤
An expression ws1

a1
· · ·wsk

ak
∈ W will be called reduced if l(ws1

a1
· · ·wsk

ak
) =

∑k
i=1 si.

Lemma 2.4. Let a1, · · · , ak ∈ Φ and si ∈ {1, · · · , m − 1} for i = 1, · · · , k.
Then ws1

a1
· · ·wsk

ak
is reduced if and only if a1, · · · , ak are linearly independent.

Proof. Let w = ws1
a1
· · ·wsk

ak
. Suppose that the expression is reduced. Then by

Lemma 2.3 w has k eigenvalues not equal to 1, and so

dim(Ha1 ∩Ha2 ∩ · · · ∩Hak
) = n− k.

(Here, the dimension cannot be larger since w acts as the identity on this subspace.)
Thus, it follows that the roots a1, · · · , ak are linearly independent.

Conversely, suppose that the roots a1, · · · , ak are linearly independent. Now,
consider the subspace im(w − 1), and select a vector v1 ∈ V such that

v1 ∈ Ha2 ∩ · · · ∩Hak
but v1 6∈ Ha1 .

Then w(v1) − v1 is a non-zero multiple of a1. Thus a1 ∈ im(w − 1). Now, select
once again a vector v2 ∈ V with

v2 ∈ Ha3 ∩ · · · ∩Hak
but v2 6∈ Ha2 .

Then w(v2)− v2 = αa1 + βa2, where α, β ∈ C and β 6= 0. Hence a2 ∈ im(w − 1).
Repeating this argument will eventually show that a1, · · · , ak ∈ im(w − 1), and
so dim im(w − 1) = k. Then w is reduced, for if w has a shorter expression w =
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wρ1
b1
· · ·wρl

bl
with l < k and ρi ∈ {1, · · · , m−1}, then every element of im(w−1) can

be written as a linear combination of b1, · · · , bl and so dim im(w−1) < k, which is
a contradiction. Furthermore, if w has an expression w = wr1

a1
· · ·wrk

ak
with ri ≤ si,

then w%k
ak
· · ·w%1

a1
w = 1 and w%k

ak
· · ·w%1

a1
wr1

a1
· · ·wrk

ak
6= 1 where %i = oW (ai) − si,

(1 ≤ i ≤ k), a contradiction. ¤

3. Admissible diagrams

Any element w = ws1
a1
· · ·wsk

ak
∈ W with l(w) =

∑k
i=1 si can be decomposed as

follows (see [1]):

w = τwsi+1
ai+1

· · ·wsk
ak

, where τ = wa1 · · ·wai ∈ W (An−1).

Corresponding to each such decomposition of w, we define a graph Γ. Γ has k
nodes, one corresponding to each root a1, · · · , ak with the value oW (ai). The
nodes corresponding to distinct roots ai, aj are joined by a bond of weight (ai, aj).
If oW (ai) = 2, then the number 2 in the node corresponding to the root ai is omitted,
as in Cohen [7]. If w ∈ W has a decomposition with graph Γ, then any conjugate
of w also has a decomposition with graph Γ. For if w = wa1 · · ·waiw

si+1
ai+1 · · ·wsk

ak
,

where wa1 · · ·wai ∈ W (An−1), then we have w′ww′−1 = wb1 · · ·wbiw
si+1
bi+1

· · ·wsk

bk
,

where bj = w′(aj) for j = 1, · · · , k.
Therefore, we say that the graph Γ is associated with this conjugacy class.

(Here, we assume that the conjugacy class containing the identity element is repre-
sented by the empty graph.) By Lemma 2.4 the nodes of Γ correspond to a set of
linearly independent roots.

Now we can give our principal definition.

Definition 3.1 Let Γ be a graph, then Γ is called an admissible diagram if

(i) the nodes of Γ correspond to a set of linearly independent roots of Φ,

(ii) each subgraph of Γ which is a cycle is equivalent to a web.

(A subgraph of Γ in this context is a subset of the nodes, together with the bonds
joining the nodes in the subset. A cycle is a graph in which each node is connected
to only two other nodes.)

Lemma 3.2. Every admissible diagram associated with a conjugacy class of W is
the Cohen (Dynkin) diagram of some reflection subgroup of W .

Proof. Let Γ be such a graph. Let J be a set of roots corresponding to the nodes
of Γ. Denote by W (J) the group generated by all reflections wa,oW (a) with a ∈ J ,
then W (J) is a subgroup of W , so is a finite reflection group. Furthermore, J
is linearly independent by definition of the admissible diagram. Thus, by (4.2) of
Cohen [7] Γ is a root graph. Now, put S = W (J)J , define a map g : S → N\{1}
by g(a) = oW (J)(a) for all a ∈ S, then the pair Ψ = (S, g) is the pre-root system
corresponding to J with W (Ψ) = W (J) by 1.2 (ii) of Can [3]. By 1.2 (iii) of Can
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[3], the pair Ψ = (S, g) is a root system and so is a subsystem of Φ. Thus, W (Ψ) is
the reflection group of Ψ, and so Γ is the Cohen (Dynkin) diagram of the reflection
subgroup W (Ψ) of W , as desired. ¤

Here, recall that Γ may be a union of disconnected graphs Γi say, which satisfy
the following: if Γi contains no web, then Γi is either of type An or Bm

n , and if Γi

does contain a web, then Γi must be of type Dm
n .

The present author [3] has presented an algorithm for obtaining the graphs
which are Cohen (Dynkin) diagrams of reflection subgroups of W without any ref-
erence to extended diagrams. In [4], we also interpreted it as a computer program
written using the symbolic computation system Maple. The Cohen (Dynkin) dia-
grams of all possible reflection subgroups of W are either of the form

m∑

i=1

si∑

j=1

Bmi

λ
(i)
j

+
s∑

j=1

Dm
µj

with
s1∑

j=1

(λ(1)
j + 1) +

m∑

i=2

si∑

j=1

λ
(i)
j +

s∑

j=1

µj = n or

m∑

i=1

si∑

j=1

Bmi

λ
(i)
j

with
s1∑

j=1

(λ(1)
j + 1) +

m∑

i=2

si∑

j=1

λ
(i)
j = n,

where mi =

{
1 if i = 1
m if i = 2, · · · , m (see [5]).

We now show that the admissible diagrams can be used to parametrise the
conjugacy classes of W .

Theorem 3.3. There is a one-to-one correspondence between conjugacy classes in
W and admissible diagrams of the form

m∑

i=1

(Bmi

λ
(i)
1

+ Bmi

λ
(i)
2

+ · · · + Bmi

λ
(i)
si

)

where
∑s1

j=1(λ
(1)
j + 1) +

∑m
i=2

∑si

j=1 λ
(i)
j = n and mi =

{
1 if i = 1
m if i = 2, · · · , m.

Proof. The elements of W operate on the orthonormal basis e1, · · · , en of V by
permuting the basis vectors and multiplying arbitrary subsets of them by a power
of ξ. By ignoring these multiples, each element w of W determines a permutation
of {1, · · · , n} which can be expressed in the usual way as a product of disjoint
cycles. Let (k1k2 · · · kr) be such a cycle which has the following shape

ek1 → ξp1ek2 → ξp1+p2ek3 → · · · → ξp1+···+pr−1ekr → ξp1+···+prek1

where pi ∈ {1, · · · , m}. The cycle (k1k2 · · · kr) is said to be a (ξp, r)-cycle if
wr(ek1) = ξpek1 , where

∑r
i=1 pi ≡ p (mod m). Then the lengths of the cycles

together with their values
∑

pi determine the type of w, and two elements of W
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are conjugate if and only if they have the same type, as in Kerber [9]. Thus there
is a one-to-one correspondence between conjugacy classes and types. Now, consider
the (ξp, r)-cycle

e1 → e2 → · · · → er−1 → er → ξpe1,

where p ∈ {1, · · · , m}. If p = m, then this can be expressed as the product
of elements (12)(23) · · · (r − 1 r). These factors form a complete set of simple
reflections of the Weyl subgroup of type Ar−1, and so this (1, r)-cycle, denoted by
[r], is represented by an admissible diagram Ar−1, as in type An - see Carter [6].
If p ∈ {1, · · · , m − 1}, then this can be expressed as the product of elements
(12)(23) · · · (r−1 r)wp

r , where wp
r changes er into ξper and fixes all other ei. Thus

these factors form a complete set of simple reflections of the reflection subgroup of
type Bm

r , and so this (ξp, r)-cycle is represented by an admissible diagram Bm
r .

Now consider an arbitrary element of W , expressed as a product of disjoint
(ξp, r)-cycles. Since disjoint cycles operate on orthogonal subspaces of V , the ad-
missible diagram splits into connected components corresponding to the cycle de-
composition, and so has form

m∑

i=1

(Bmi

λ
(i)
1

+ Bmi

λ
(i)
2

+ · · · + Bmi

λ
(i)
si

)

where
∑s1

j=1(λ
(1)
j + 1) +

∑m
i=2

∑si

j=1 λ
(i)
j = n and mi =

{
1 if i = 1
m if i = 2, · · · , m,

as desired. ¤

Remark 3.4. Now, define m partitions λ(1), · · · , λ(m) by

λ(1) = (λ(1)
1 + 1, · · · , λ(1)

s1
+ 1) , λ(i) = (λ(i)

1 , · · · , λ(i)
si

) (i = 2, · · · , m),

then there is a one-to-one correspondence between conjugacy classes in W and m-

sets of partitions (λ(1), · · · , λ(m)) of n with
s1∑

j=1

(λ(1)
j + 1) +

m∑

i=2

si∑

j=1

λ
(i)
j = n (see

Kerber [9]).
If m = 1, then W = W (An−1) (Wely group of type An−1) and if m = 2 then

W = W (Cn) (Weyl group of type Cn), and so by putting m = 1, 2 in Theorem
3.3, we recover the results of Carter [6]. The admissible diagrams given in Theorem
3.3 are not the only ones which could have been taken. We know that W contains
a reflection subgroup G(m, m, n) = W (Dm

n ) (see [7]), and so Dm
n is an admissible

diagram for W . However since the admissible diagrams given in Theorem 3.3 are
in one-to-one correspondence with the conjugacy classes of W , we do not need to
consider the remainder.
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