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ABSTRACT. In this paper, we discuss the value distribution of the derivative of a mero-
morphic function.

1. Introduction, definitions and results

Let f be a transcendental meromorphic function defined in the open complex
plane C. Hayman ([9]) proved the following result.

Theorem A ([9]). If n(> 3) is an integer then 1 = f ' assumes all finite values,
except possibly zero, infinitely many times.

He ([11]) also conjectured that Theorem A remains valid if n = 1 or 2. Mues
([13]) proved the result for n = 2 and the result for n = 1 was proved by Bergweiler
and Eremenko ([2]) and independently by Chen and Fang ([5]).

In 1994 Yik-Man Chiang raised the question of the value distribution of ff’ —
a, where a = a(z) is a meromorphic function which is not identically zero and
satisfies T'(r,a) = S(r, f) (cf.[3]). To answer this question Bergweiler ([3]) proved
the following theorem.

Theorem B ([3]). Let f be a transcendental meromorphic function of finite order
and let ¢(Z 0) be a polynomial. Then ff" — ¢ has infinitely many zeros.

Zhang ([16]) proved the following result which is also in the direction of the
question of Chiang.

Theorem C ([16]). Let f be a transcendental meromorphic function such that
8(o0; f) > 7/9. Then ff' — a has infinitely many zeros, where a(Z£ 0, o0) is a
meromorphic function satisfying T(r,a) = S(r, f).

Recently Yu ([15]) and the authors ([12]) treated the general case and proved
the following theorem.
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Theorem D. If f is a transcendental meromorphic function and a(Z 0, o0) is a
meromorphic function satisfying T(r,a) = S(r, f) then one of ff' —a and ff' +a
has infinitely many zeros.

However the result of Bergweiler ([3]) seems to be of interest as it imposes a
restriction on the growth of the function f (in contrast to Theorem C where a
restriction on the poles is imposed) and only one target function is involved (in
contrast to Theorem D where two target functions are involved). In the paper we
see that if instead of a polynomial we choose a monomial as the target function then
in Theorem B the order restriction can be dropped. In fact we prove the following
result.

Theorem 1. Let f be a transcendental meromorphic function. Then fPf'—az" has
infinitely many zeros, where a(# 0) is a constant and n is a nonnegative integer, p
is a positive integer.

Actually Theorem 1 follows as a consequence of the following result.

Theorem 2. Let Q(z) be a nonconstant polynomial having no simple zero and
P(z) = 2£Q(z). If f is a transcendental meromorphic function then P(f(2))f'(z)—
az" has infinitely many zeros, where a(# 0, oo) is a complex number and n is a

nonnegative integer.
Also Theorem 2 follows from the following theorem.

Theorem 3. Let f be a transcendental meromorphic function having no simple
zero and simple pole. Then f'(P(z)) — Picy has infinitely many zeros, where P(2)
is a nonconstant polynomial, a(# 0, 00) is a complex number and n is a nonnegative
integer.

Fang ([7]) proved the following result.

Theorem E ([7]). Let f be a transcendental meromorphic function of infinite
order. If f and f' have the same zeros then f'(z) — az™ has infinitely many zeros,
where a(#£ 0,00) is a complex number and n is a nonnegative integer.

Considering f(z) = exp(exp(2?)) we see that though f and f’ have not the
same set of zeros, f’(z) — az™ has infinitely many zeros. In the following corollary
to Theorem 3 we see that if we impose a minor restriction on the poles of f, the
condition on the zeros of f can be relaxed.

Corollary 1. Let f be a transcendental meromorphic function such that zeros of
f are the zeros of f'. If f has no simple pole then f'(z) — az™ has infinitely many
zeros, where a(#£ 0, 00) is a complex number and n is a nonnegative integer.

The Ahlfors-Shimizu characteristic function Ty(r, f) of a meromorphic function

f is defined as
n.) = [ 2 a
0

t
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where A(t, f) = £ [ [f#(2)dxdy and f#(2) = .
|z|<t

Also we know that T'(r, f) = To(r, f) + O(1). For the standard definitions and
notations of the value distribution theory we refer to [10]. In the paper we adopt
some techniques of Bergweiler ([3]) and Fang ([7]).

2. Lemmas
In this section we present the necessary lemmas.

Lemma 1. Let f be a nonconstant rational function having no simple zero. If the
number of poles of f, if there is any, is at least two (counted with multiplicity) then
for any complex number a(#£ 0, o), f' + a has at least one zero.

Proof. 1If f is a polynomial then the degree of f is at least two and so f’ is a
non-constant polynomial. Hence f’ + a has at least one zero.

Let f = p/q, where p, ¢ are polynomials of degree m and n(> 1) respectively
and p, ¢ have no common factor.

If possible we suppose that f’ + a has no zero. Now we consider the following
cases.

Case 1. Let m <n+ 1. Then

/ / 2
f,MZMP(]#:% say.
Then R, S are non-constant polynomials such that degree of R = degree of S. Since
/" + a has no zero, it follows that R and S share zeros (counting multiplicities). So
R = AS, where A is a constant. Therefore f'+a = A and so f = (A —a)z + B,
where B is a constant. This is impossible because f is non-constant and has no
simple zero.

Case 2. Let m > n+ 1. Then »
f=r+=,
q

where p; and r are polynomials with respective degrees m; and ¢(> 2) such that
m=t+nand m; <n. So

;o /
f’—i—a _ 7“’—|—p1q 2]91(] +a
q
_ (" +ad®+pig—pd
PR
Ry
= o v Say
S

Let p1 = am, 2™ +---+a1z2+ap and ¢ = b, 2" + - - - + b1 2+ by, where a,,, # 0,
by, # 0. Since the coefficient of the leading term of p}q¢ —p1¢’ is (M1 — n)am, by # 0,
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the degree of pjg—p1¢’ ismi+n—1. Since m;+n—1<2n—1< 2n+t—1, we see
that degree of R; > degree of S. So as the Case 1 f becomes a linear polynomial,
which is impossible.

Case 3. Let m =n+ 1. Then

(1) f=az+ﬁ+%a

where «, 8 are constants and p; is a polynomial of degree m; < n.
Let a + a # 0. Then

1g—md +(a+a)i®> R
fya= 4= P 2(@ )i’ _ B
q S

Since the degree of pjg—p1¢’ ism1+n—1<2n—1 < 2n, it follows that degree
of Ry = degree of S. So as the Case I f becomes a linear polynomial, which is
impossible.

Let a + a =0. Then

_Pia—md

(2) f'+a =

)

where the degree of pjq — p1¢’ is my +n — 1.
Now we consider the following two subcases.

Subcase 3.1. Let pjq — p1q¢’ have no zero. Then my +n = 1 and so m; = 0 and
n = 1 because my < n. So from (1) we see that

f=aztft

where v, 6, D are constants.
This is impossible because f is non-constant and has no simple zero and has at
least two poles (counted with multiplicity), if there is any.

Subcase 3.2. Let pq — p1¢’ have some zero. Since f’ + a has no zero, it follows that
all the factors of piq — p1¢’ are factors of ¢?. Hence we can write

q2 = (pllq - plq/)Qh

where ¢; is a polynomial of degree n + 1 — mq(> 0).
From (2) we get

1
(3) flra=—.
q1
Let aq, as, ---, ap be distinct zeros of ¢; with respective multiplicities k1, ko, ---, k.

Since ¢ is non-constant, we see that [ > 1.
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Since a1, g, ---, «a are the only poles of f’ with respective multiplicities
ki, ko, ---, ki, it follows that a1, as, ---, « are the only poles of f with
respective multiplicities k; — 1, ko — 1, ---, k; — 1. Hence we get from (1) and (3)

k1+k2++kl:n+l and k1+k2+'~-+kl:n+1—m1.

Somi+1=1. Since [l > 1, it follows that my =0, [ =1 and k&; = n+ 1. Therefore
from (1) we get

(4) f

az+ 0+ 7(72+5)n

(az+B)(yz+ )"+ D
(vz +9)n ’

where 7, § and D are constants. Since f is not a linear polynomial, it follows that
D #0. Also we see that z = —§/v is the only pole of f.

Let Q = (az+ B)(v2+6)"+ D. Then Q' = (v2+6)" ! [a(y + n)z + ad + n3)|.
Since f has no simple zero, it follows that a zero of f is also a zero of Q' and so a
zero of a(y+n)z+ ad +npB. So f and @ have only one double zero. Hence we get
n = 1. Therefore from (4) we get

=z + ;
f + P
which is impossible because f is non-constant and has no simple zero and and has at

least two poles (counted with multiplicity), if there is any. This proves the lemma.
O

Lemma 2 ([2]). Let f be a meromorphic function of finite order. If f has infinitely
many multiple zeros then f' assumes every finite nonzero value infinitely many
times.

Lemma 3 (p.60 [10]). Let f be a transcendental meromorphic function. If f has
only finitely many zeros then [’ assumes every finite nonzero value infinitely many
times.

Combining the above lemmas we obtain the following lemma.

Lemma 4. Let f be a nonconstant meromorphic function of finite order having no
simple zero. If the number of poles of f, if there is any, is at least two (counted
with multiplicity) then for every complex number a(#£ 0, o0), f'+a has at least one
zero.

Lemma 5 ([4], [14]). Let § be a family of meromorphic functions defined in a
domain ® such that every function f € § has zeros, if there is any, of multiplicities
at least k. If § is not normal at a point zg € ® then for 0 < a < k, there exist a
sequence of functions f; € §, a sequence of complex numbers z; — zo and a sequence
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of positive numbers p; — 0, such that pj_o‘fj(zj + p;¢) converges spherically and
locally uniformly to a nonconstant meromorphic function g(¢) on C. Moreover the
order of g is at most two and g has only zeros, if there is any, of multiplicities at
least k.

Lemma 6. Let § be a family of meromorphic functions in a domain © and a =
a(z)(£ 0) be a nonvanishing analytic function in ©. If for every f € §

(i) f has no simple zero and simple pole,
(ii) f(z) = a(z) whenever f'(z) = a(z),
then § is a normal family.

Proof. If possible, let § be not normal at a point zyg € ©. Then by Lemma 5 for
a = 1 there exist a sequence of functions f; € §, a sequence of complex numbers
zj — zp and a sequence of positive numbers p; — 0 such that g;({) = p;lfj (zj+p;iQ)
converges spherically and locally uniformly to a nonconstant meromorphic function
g(¢). Moreover g is of finite order and has only multiple zeros (if there is any). Also
we note that g has at least two poles (counted with multiplicity), if there is any.

Since a(zg) # 0,00, by Lemma 4 there exists {; € C such that ¢'(¢o) = a(zo).
Hence ¢’ and so g are analytic in some neighborhood of (3. Therefore in some
neighborhood of (y g;’s are analytic for all sufficiently large values of j and g; — g,
g; — ¢’ uniformly in that neighborhood of (o.

First we suppose that ¢7(¢) — a(z; + p;¢) # 0 for infinitely many values of j
and in some neighborhood of (. Since g}(¢) — a(z; + p;¢) converges uniformly to
g'(¢)—a(zp) in some neighborhood of {y, by Hurwitz’s theorem we get g’ ({)—a(z) =
0 in some neighborhood of (4. Since g is meromorphic, it follows that ¢’(¢) = a(z)
in C, which contradicts the fact that g has no simple zero.

Next we suppose that there exists a sequence (; — (o such that ¢7((;) =
f'(z5 + piC) = alzj + p;(;). Since fj(z) = a(z) whenever f}(2) = a(2), it follows
that f;(z; + p;¢;) = a(z; + p;¢;) and so p;g;({;) = a(z; + p;¢;). This implies
that ¢;(¢;) = p%_a(zj + pj¢;) — oo as j — oo, which contradicts the fact that
9;(¢;) — g(Co) # oo. This proves the lemma. O

q
Lemma 7 ([6]). Let f be a nonconstant meromorphic function and F = ﬁ,
j=1""

where ¢;’s are meromorphic functions and T(r, ¢;) = o{T(r, f)} asr — co. Then

Zm(r, f_lqu) <m(r,F)+ S(r, f).

Jj=1

Lemma 8 ([8]). Let f be a transcendental meromorphic function. Then for each
positive number £ and each positive integer k we have

EN(r, f) < N(r,0; f®Y 4 N(r, f) 4+ T (r, ) + S(r, f).
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Lemma 9 ([2]). Let f be a transcendental meromorphic function of finite order.
If [ has only finitely many critical values then f has only finitely many asymptotic
values.

Lemma 10 ([1]). Let f be a transcendental meromorphic function such that f(0) #
oo. If the set of finite critical and asymptotic values f is bounded then there exists

R(> 0) such that
| f( ) |, L)

for all z € C\{0} which are not the poles of f.
3. Proof of the Theorems
Proof of Theorem 3. We consider the following cases.

Case I.  Let f(P) be of infinite order. Then f(P(z))/z""! is of infinite order.
Hence

s 20 T s A T

imsup ——%———- = o0 and so limsup ———= = oc.

oo (logr)? r—oo log r

Let § = {g,(2) : gj(2) = %,j =1,2,3,-- ;3 <|z] < 3}. If possible we

suppose that § is a normal family. Then by Marty’s criterion there exists M > 0
such that
g7 () <M for j=1,2,3,---;1<[z[ <2

Now

a0 = L] ((HE2)

2| <2s

RNy

m=0gm <| 2| <am+1

Z | Gtw)acan+oq)

1<| <2
< 3jM? = Kj,

3 |

S

where w = ¢ +in and K = 3M?.
So for any r (2771 <r < 27) we have

A(n DY < (2. 1PED) sy < (21 0,

Zntl Zntl log 2
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a contradiction. So § is not normal in 1 < |2 < 2. Hence the family §; = {h;(z) :
hj(z) = 2""1g;(2),j =1,2,3,---} is not normal in 1 < |z| < 3.
Then for a(z) = az™ we see by Lemma 6 that there exists infinitely many j and

2j such that hj(z)) = a2 and so ['(P(20z))) = s Hence f/(P(2)) — #5

has infinitely many zeros.

Case II. Let f(P) be of finite order. First we suppose that f and so f(P) have
finitely many zeros. Now in view of Lemmas 7 and 8 we get for b = az"

1 1 1
) < m(r )+m(rvm)

m{r, 5+ T =) + S )
) +500)
T(r. f02) = N(r.0: £0) + S(r, f)
0 ) NS+ DN ) = N0 S 2) +800)
1%

T(r, f') + —2N(r 0; F(+2)) 4 %N(T, )+ T(r, f)

—N(r,0; f" ) + S(r, f)

) mlr

m(r

IA

+

IN

m(r,

IA

IN

2n +4

ie.,

1 1 1 n+1

T(r, f)+1(r, m) <T(r, fl)+mT(7“a f)+N(r, m)‘F n N(r, f)+S(r, f)

and so )
T(r, f) < (2n+4)N(r, m) +S(r, f).
Replacing f by f(P) in the above inequality we get
1
C(P()P'(2) = b

7m) +S(r, f(P)),

has infinitely many zeros.

T(r, f(P) < (2n+4)N(r

)+ 5(r, f(P))

< (2n+4+4)N(r

which shows that f/(P(z)) — P,(z)
Next we suppose that f and so f(P) have infinitely many zeros. Let
21, 72, 23, -+ be the zeros of f(P). We put g(z) = f(P(2)) — az""!/(n + 1).
We now suppose that ¢'(z) has finitely many zeros, then g has finitely many critical
values. So by Lemma 9, g has finitely many asymptotic values. Without loss of
generality we suppose that g(0) = f(P(0)) # co. Then by Lemma 10 we get

50 )l 1 lg(z)]
9G] = 2n |
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Since 5= log @ — 00 as j — oo, it follows that % — 00 as j — 0o. On
J

the other hand % —n+1as j — oo, a contradiction. Therefore ¢'(z) and

so f'(P(z)) — % has infinitely many zeros. This proves the theorem. O

Note 1. If we suppose that f is a transcendental meromorphic function of finite
order having no simple zero then similar to Case II of the above proof we can prove

that f/(P(z)) — g,((zz)) has infinitely many zeros, where Q(z)(# 0) is a polynomial.

Proof of Theorem 2. Since Q(f(z)) has no simple zero and simple pole, by Theorem
3

has infinitely many zeros.

LPt1
p+1°

Proof of Theorem 1. Theorem 1 follows from Theorem 2 if we choose Q(z) =
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