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Abstract. In this paper, we study unitary representations of the group GL(n,R)nR(m,n).

1. Introduction

This paper is a continuation of “Harmonic Analysis on Pn×R(m,n), I”. The aim
of this paper is to study the unitary representations of the group GL(n,R)nR(m,n)

in detail.
The motivation for studying the group GL(n,R) n R(m,n) can be explained as

follows. We consider the Heisenberg group

H
(n,m)
R =

{
(λ, µ; κ) | λ, µ ∈ R(m,n), κ ∈ R(m,m), κ + µ tλ symmetric

}

endowed with the following multiplication law

(λ, µ; κ) ◦ (λ′, µ′;κ′) = (λ + λ′, µ + µ′, κ + κ′ + λ tµ′ − µ tλ′).

We define the semidirect product of Sp(n,R) and H
(n,m)
R

Spn,m = Sp(n,R)nH
(n,m)
R

endowed with the following multiplication law

(M, (λ, µ;κ)) · (M ′, (λ′, µ′;κ′))
= (MM ′, (λ̃ + λ′, µ̃ + µ′, ;κ + κ′ + λ̃ tµ′ − µ̃ tλ′)),

where M, M ′ ∈ Sp(n,R) and (λ̃, µ̃) = (λ, µ)M ′. It is easy to see that the Jacobi
group Spn,m acts on the homogeneous space Hn × C(m,n) transitively by

(1.1) (M, (λ, µ;κ)) · (Z, W ) := (M〈Z〉, (W + λZ + µ)(CZ + D)−1),
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where M =
(

A B
C D

)
∈ Sp(n,R), (λ, µ;κ) ∈ H

(n,m)
R and (Z, W ) ∈ Hn × C(m,n).

We let
GLn,m = GL(n,R)nR(m,n)

be the semidirect product of GL(n,R) and the commutative additive group R(m,n)

equipped with the following multiplication law

(1.2) (g, a) · (h, b) = (gh, a th−1 + b),

where g, h ∈ GL(n,R) and a, b ∈ R(m,n). Then the action (1.1) of Spn,m on
Hn ×C(m,n) gives a canonical action of GLn,m on the nonsymmetric homogeneous
space Pn × R(m,n) given by

(1.3) (g, a) · (Y, V ) := (gY tg, (V + a) tg),

where g ∈ GL(n,R), a ∈ R(m,n), Y ∈ Pn and V ∈ R(m,n). In [15], we developed
the theory of automorphic forms on GL(n,R) n R(m,n) generalizing automorphic
forms on GL(n,R).

This paper is organized as follows. In Section 2, we survey the unitary rep-
resentations of the general linear group GL(n,R). The unitary dual of GL(n,R)
was completely determined by E. Stein [10], B. Speh [6]-[8], D. Vogan [14] and
other people. We also review certain principal series of GL(n,R) investigated by
R. Howe and S. T. Lee [2]. In Section 3, we study the unitary representations of
GL(n,R) n R(m,n). Using the Mackey’s method, we compute the unitary dual of
GL(n,R)nR(m,n) explicitly in the cases of n = 2, 3, m arbitrary. We also deal with
certain unitary representations of GL(n,R)nR(m,n) (cf. (3.8)) and discuss their ir-
reducibility.

Notations. We denote by Z, R and C the ring of integers, the field of real num-
bers, and the field of complex numbers respectively. R× denotes the multiplicative
group consisting of nonzero real numbers. The symbol C×1 denotes the multiplica-
tive group consisting of all complex numbers z with |z| = 1. The symbol “:=”
means that the expression on the right hand side is the definition of that on the
left. We denote by Z+ the set of all positive integers. We denote by F (k,l) the set
of all k× l matrices with entries in a commutative ring F . For any M ∈ F (k,l), tM
denotes the transpose matrix of M . For a Lie group G, we denote by Ĝ the unitary
dual of G.

2. A survey on the unitary dual of GL(n,R)

In this section, we survey the unitary dual of GL(n,R). The references are
[12]-[14], [5] and [6]-[8].

First we define the Stein’s complimentary series (cf. [10]). Assume n = 2m with
m a positive integer. We write

P = LN =
{(

A B
0 D

) ∣∣∣ A, D ∈ GL(m,R), B ∈ R(m,m)

}
,
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where

L =
{(

A 0
0 D

) ∣∣∣ A,D ∈ GL(m,R)
}
∼= GL(m,R)×GL(m,R)

and

N =
{(

Im B
0 Im

) ∣∣∣ B ∈ R(m,m)

}
∼= R(m,m).

Then P is a maximal parabolic subgroup of GL(2m,R) and N is the unipotent
radical of P .

Let δm : GL(m,R) −→ R be the modular function. That is, δm(g) = det g
for g ∈ GL(m,R). We fix a one-dimensional unitary character j of GL(m,R) and
a complex number t. We let φ2m(j, t) : P −→ C× be the (generally non-unitary)
character of P defined by

φ2m(j, t)((g, h), n) := j(gh) · [δm(gh−1)]t,

where g, h ∈ GL(m,R) and n ∈ N. We put

(2.1) σ2m(j, t) = IndGL(n,R)
P φ2m(j , t).

According to Stein [10], we see that σ2m(j, t) is unitary and irreducible for t ∈ iR,
and that σ2m(j, t) is irreducible for |t| < 1

2 . We call the representations σ2m(j, t) for
0 < t < 1

2 the Stein complimentary series of GL(2m,R).
We observe that the characters of GL(m,R) may be identified in a natural way

with the characters of GL(1,R), and hence j extends to a character of GL(2m,R).

Now we fix a unitary character

(2.2) j1 : R× −→ C×.

This corresponds naturally to a family of characters

(2.3) jm : GL(m,R) −→ C×

characterized by the property that for m ≤ m′,

jm′ |GL(m,R) = jm.

We refer to the collection {jm} loosely as j. We recall that a representation σ of
GL(m,R) is called spherical if the trivial representation of O(m) is contained in the
restriction of σ to O(m).

Definition 2.1. Let j be a family of characters as in (2.3). Define one-dimensional
representations µm of O(m) by

(2.4) µm = jm|O(m).
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Write µ for the collection {µm}. We call µm a special one dimensional representation
of O(m). A representation σ of GL(m,R) is called almost spherical of type µm if
µm occurs in the restriction of σ to O(m), in other words, if j−1

m ⊗ σ is spherical.

Definition 2.2. An (ordered) partition of a positive integer n is a sequence

π = (n1, n2, · · · , nr), ni ∈ Z+,

r∑

i=1

ni = n.

We define

GL(π) := GL(n1,R)× · · · ×GL(nr,R) ⊂ GL(n,R),
O(π) := O(n1)× · · · ×O(nr) = O(n) ∩GL(π).

We let P (π) be the parabolic subgroup of GL(n,R) generated by GL(π) and the
Borel subgroup B of GL(n,R) consisting of upper triangular matrices. We let N(π)
the unipotent radical of P (π).

We fix µ = {µm} as in Definition 2.1. The data are a partition π = (ni) of n,
and a collection

τ = (τi), τi ∈ ̂GL(ni,R),

such that

(a) τi is almost spherical of type µni , and

(b) τi is either a unitary character or a Stein complimentary series.

We call the following induced representation

σπ(τ) := IndGL(n,R)
P(π) ⊗ τi

a basic almost spherical representation of type µ.

Theorem 2.3.

(1) σπ(τ) and σπ′(τ ′) are equivalent if and only if (π′, τ ′) is a permutation of
(π, τ).

(2) The basic almost spherical representations are unitary.

(3) The basic almost spherical representations are irreducible.

(4) Any irreducible unitary almost spherical representation of GL(n,R) is basic.

The outline of proof can be found in [14], p. 455.

Definition 2.4. Let G be a real Lie group with Lie algebra g. Let K be a compact
subgroup of G. Let V be a g-module that is also a module for K. We say that V
is a (g,K)-module if the following conditions (1)-(3) are satisfied:
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(1) The action of g on V is compatible with that of K on V . That means that
k ·X · v = Ad(k)X · k · v for v ∈ V, k ∈ K, X ∈ g.

(2) If v ∈ V , then Kv spans a finite dimensional vector space Wv of V such that
the action of K on Wv is continuous.

(3) If Y ∈ k and if v ∈ V, then d
dt

∣∣∣
t=0

exp(tY )v = Y v.

A (g,K)-module is said to be finitely generated if it is finitely generated as a U(g)-
module. V is said to be irreducible if V and 0 are the only g and K-invariant
subspaces of V .

Definition 2.5. Suppose G is a reductive Lie group with K a maximal compact
subgroup of G. Let b be a Borel subalgebra of k, and T the corresponding Cartan
subgroup. Write 2ρc for the sum of the roots of t in b. Fix an irreducible represen-
tation µ of K of highest weight γ in T̂ . Let γ0 ∈ t∗ be a weight of γ. We define the
norm ‖µ‖ of µ by

(2.5) ‖µ‖ = 〈µ + 2ρc, µ + 2ρc〉.

If X is any (g,K)-module, we say that µ is a lowest K-type of X if

(a) µ occurs in the restriction of X to K; and

(b) ‖µ‖ is minimal subject to (a).

Theorem 2.6. Let X be an irreducible (g,K)-module for G = GL(n,R). Then X
has a unique lowest K-type. It occurs with multiplicity one in X.

Remark 2.7. Representations of general reductive groups may have several lowest
K-types. For more detail, we refer to [12].

For a positive integer n, we let m = [n/2] and ε = n − 2m. Then n = 2m + ε.
We set

T0 = SO(2)× · · · × SO(2) (m copies).

Embedding T0 in O(n) and identifying SO(2) with the circle, we obtain

T̂0
∼= Zm.

The Cartan subgroup T of O(n) is given by

T = T0 o {En, rn},

where En denotes the identity matrix of degree n and rn = diag(1, · · · , 1,−1) is the
diagonal matrix of degree n.

Proposition 2.8. The irreducible representations of O(n) are parametrized by pairs
(γ, η), subject to the following conditions.
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(a) γ is a decreasing sequence of m non-negative integers, in other words, a weight
of T0.

(b) If n is even and γm is not zero, then η is 1
2 ; otherwise η = 0 or 1.

Let µ be the irreducible representation of O(n) of highest weight (γ, η). If η = 0 or
1, the restriction of µ to SO(n) is the irreducible representation of highest weight γ.
If η = 1

2 , the restriction of µ to SO(n) is the sum of the irreducible representations
of highest weight γ = (γ1, · · · , γm−1, γm) and (γ1, · · · , γm−1,−γm).

Let µ be an irreducible representation of O(n) of highest weight (γ, η) as in
Proposition 2.8. Let p be the largest integer such that γp is at least 2. Define

(2.6) λ(µ) = (γ1 − 1, · · · , γp − 1, 0, · · · , 0).

Let π = (p1, · · · , pr) be the coarsest ordered partition of p such that γ is constant
on the parts of π. Then the centralizer Lθ := Lθ(µ) of λ(µ) in GL(n,R) is given by

(2.7) Lθ = GL(π,C)×GL(n− 2p,R),

where

GL(π,C) =
r∏

i=1

GL(pi,C).

We let µLθ
be the representation of Lθ ∩K of highest weight

((γ1 − 1, · · · , γp − 1, γp+1, · · · , γm), η).

Let µf be the representation of O(n− 2p) parametrized by ((γp+1, · · · , γm), η). Let
γ(j) denote the constant value of γ on the j-th part of π. Then we get

(2.8) µLθ
=

[
⊗r

j=1 detγ(j)−1
]
⊗ µf .

We write q = n− 2p. The last [n/2]− p terms of γ are zeros and ones; say there are
q′ ones. Define q0 and q1 as follows:

(2.9) if η = 0 or
1
2
, then q1 = q′ and q0 = q − q1;

and

(2.10) if η = 1 or
1
2
, then q0 = q′ and q1 = q − q0.

Let

(2.11) L := GL(π,C)×GL(q0,R)×GL(q1,R).

We define

(2.12) µL :=
[
⊗r

j=1 detγ(j)−1
]
⊗ 1⊗ det.
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It is clear that µL is an almost spherical representation of L ∩O(n).

Lemma 2.9. Suppose q0 and q1 are non-negative integers, and q = q0 + q1. Write
q = 2r + ε with r = [q/2]. Then there is a unique decreasing sequence γ of r ones
and zeros, and an η equal to 0, 1

2 or 1, with the following properties (1) and (2) :

(1) η is 1
2 if and only if q is even and γr = 1;

(2) (2.9) and (2.10) hold, where q′ is the number of ones in γ.

Write µf = µf (q0, q1) for the irreducible representation of O(q) of highest weight
(γ, η) with q = q0 + q1. Then µf is the lowest O(q)-type of

Ind O(q)
O(q0)×O(q1)

(1⊗ det).

D. Vogan proved the following important theorem.

Theorem 2.10 (Vogan, [14]). Let G = GL(n,R) and K = O(n). Let (L, µL) be
the one defined by (2.11) and (2.12). Then L is a product of various GL(mi,R),
and µL is a special one dimensional representation of L ∩ K (see Definition 2.1).
And there is a functor Ω defining a bijection from the set of irreducible unitary
representations of L, almost spherical of type µL onto the set of irreducible uni-
tary representations of G of lowest K-type µ. In particular, Ω has the following
properties:

(a) If Y is a basic almost spherical representation of L of type µL, then ΩY is
unitary and irreducible.

(b) If X is any irreducible unitary representation of G of lowest K-type µ, then
there is a unitary almost spherical representation Y of L such that X is a
subquotient of ΩY.

Now we describe the functor Ω in a rough way. The main idea in the proof of
Theorem 2.10 is to reduce irreducible unitary representations to the case of spherical
representations. Together with Theorem 2.3, the above theorem parametrizes the
unitary dual of GL(n,R).

For brevity, we set G = GL(n,R) and K = O(n) for the time being. Fix an
element µ on the unitary dual K̂ of K. Define λ := λ(µ) as in (2.6). Then λ belongs
to a fixed Cartan subalgebra t of k. We may find a θ-stable parabolic subalgebra

qθ = lθ + uθ

of g, where Lθ is defined as in (2.7). uθ is characterized by the properties :

∆(uθ, t) = {α ∈ ∆(g, t)| 〈α, λ〉 > 0 }
and

∆(lθ, t) = {α ∈ ∆(g, t)| 〈α, λ〉 = 0 } .
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We define a functor
Ωθ = LS((qθ, Lθ ∩K) ↑ (g,K))

from (lθ, Lθ ∩K)-modules to (g,K)-modules. The definition of LS is explained in
Section 5 of [12]. We define a functor

(ΩK)θ = (LK)S

from representations of Lθ ∩K to representations of K.
Fix a real parabolic subgroup P of Lθ with Levi factor L, where L is defined as

in (2.11). Let
P = LN

be the Levi decomposition of P . We define a functor

ΩR = Ind (L ↑ Lθ)

from (l, L ∩K)-modules to (lθ, Lθ ∩K)-modules. We also define a functor

(ΩK)R = Ind((L ∩K ) ↑ (Lθ ∩K ))

from representations of L ∩K to representations of Lθ ∩K.
We define a functor

(2.13) Ω = Ωθ ◦ ΩR

from (l, L ∩K)-modules to (g,K)-modules. We set

ΩK = (ΩK)θ ◦ (ΩK)R

a functor from representations of L ∩ K to representations of K. The functor
Ω in (2.13) is nothing but the functor mentioned in Theorem 2.9. The complete

description of the unitary dual of GL(n,R) was given by V. Bargman [1] for n = 2,
B. Speh [7] for n = 3, 4 and D. Vogan [14] for the general case. For the case n = 2, we
pass from SL(2,R) to the group SL(2,R)± of matrices of determinant ±1. Then we
pass from SL(2,R)± to GL(2,R) pasting on a character of a group R·I2 ⊂ GL(2,R)
(cf. [1], [3]). For the general case, first we let B be the Borel subgroup of GL(n,R)
consisting of the upper triangular matrices with nonzero determinant. We let U be
the unipotent radical of B and T a split Cartan subgroup of B. Let

χ = (χ1, χ2, · · · , χn)

be a character of T , that is, a collection of n characters of R×. We extend χ to a
character of B trivial on U . Then the induced representation

I(χ) = IndGL(n,R)
B χ



Harmonic Analysis on Pn × R(m,n), II 311

has a unique irreducible quotient

(2.14) J(χ) = I(χ)/I(χ)0,

where I(χ)0 is the only maximal proper closed invariant subspace of I(χ). It can be
shown that for a character χ = (χ1, χ2, · · · , χn) of T such that Re (si−sj) ∈ Z+ for
all i, j with 1 ≤ i < j ≤ n, the necessary and sufficient condition on the unitarity
of J(χ) is that there exist a partition n = n1 + n2 + · · ·+ nr (r ∈ Z+) and unitary
characters ηi of R× for i = 1, · · · , r such that

J(χ) ∼= IndGL(n,R)Qr
i=1 GL(ni ,R) ⊗r

i=1 ηi(detGL(ni ,R)).

Vogan [14] proved that the unitary dual of GL(n,R) consists of

(UD1) unitarily induced representation;

(UD2) complimentary series;

(UD3) the one-dimensional representations;

(UD4) a family J(χ) in (2.14) which are not induced from any parabolic subgroups
of GL(n,R).

Now we discuss certain principal series of GL(n,R). Let π = (n1, · · · , nr) be a
partition of n. We recall that P (π) is the parabolic subgroup of GL(n,R) generated
by GL(π) and the Borel subgroup B (cf. Definition 2.2). Obviously

(2.15) P (π) = {g = (gij)| gij ∈ M(ni, nj ;R), gij = 0 (1 ≤ j < i ≤ r)} .

If n = r, i.e., n1 = · · · = nr = 1, then P (π) is called a minimal parabolic subgroup
of GL(n,R). If r = 2, that is, if n1 + n2 = n, then P (π) is said to be a maximal
parabolic subgroup of GL(n,R).

For multi-indices ε = (ε1, · · · , εr) ∈ (Z/2Z)r and ν = (ν1, · · · , νr) ∈ Cr, we
define the character χε,ν of P (π) by

(2.16) χε,ν(g) =
r∏

i=1

|det gii|νi (sgn(det gii))
εi ,

where g = (gij) ∈ P (π) (cf. (2.15)). It is known that for any ε = (ε1, · · · , εr) ∈
(Z/2Z)r and ν = (ν1, · · · , νr) ∈ (

√−1R)r, the induced representation

(2.17) τε,ν(π) = IndGL(n,R)
P(π) χε,ν

is an irreducible unitary representation of GL(n,R). If P (π) is a minimal parabolic
subgroup, τε,ν(π) in (2.17) is called a unitary principal series of GL(n,R). If r < n,
that is, if one of nj ’s is larger than 1, τε,ν(π) in (2.17) is called a unitary degenerate
series of GL(n,R). If ν 6∈ (

√−1R)r, the principal series τε,ν(π) is not unitary in
general.
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For a positive integer k with 1 ≤ k ≤ [n/2], we let

Pk =
{(

c b
0 a

)
∈ GL(n,R)

∣∣∣ a ∈ GL(k,R), c ∈ GL(n− k,R), b ∈ M(n− k, k;R)
}

be a maximal parabolic subgroup of GL(n,R). For α ∈ C, we define the character
χ±α : Pk −→ C by

χ±α

((
c b
0 a

))
=

{
(det a)α if det a > 0,

±|det a|α if det a < 0.

Howe and Lee [2] investigated the irreducibility and the unitarity of the following
degenerate series τk,α of GL(n,R) defined by

(2.18) τ±k,α := IndGL(n,R)
Pk

χ±α .

The representation space τ±k,α is the space consisting of functions f : GL(n,R) −→ C
satisfying the condition

f(gp) = [χ±α (p)]−1f(g), g ∈ GL(n,R), p ∈ Pk.

GL(n,R) acts on the space τ±k,α by left translation:

(g · f)(h) = f(g−1h), g, h ∈ GL(n,R), f ∈ τ±k,α.

Howe and Lee [2] proved the irreducibility of τ±k,α as follows:

(a) If α 6∈ Z, then τ±k,α are irreducible.

(b) If α is an even integer such that −n/2 ≤ α ≤ −2[(k + 1)/2], then τ+
k,α is

irreducible. If α is an even integer such that α ≥ 2− 2[(k + 1)/2], then τ+
k,α

is reducible.

(c) If α is an even integer such that −n/2 ≤ α ≤ −1 − 2[k/2], then τ−k,α is
irreducible. If α is an even integer such that α ≥ 2 − 2[k/2], then τ−k,α is
reducible.

(d) If α is an odd integer such that −n/2 ≤ α ≤ −1 − 2[k/2], then τ+
k,α is

irreducible. If α is an odd integer such that α ≥ 1 − 2[k/2], then τ+
k,α is

reducible.

(e) If α is an odd integer such that −n/2 ≤ α ≤ −1 − 2[(k + 1)/2], then τ−k,α is
irreducible. If α is an odd integer such that α ≥ 3− 2[(k + 1)/2], then τ−k,α is
reducible.
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For the unitarity of τ±k,α, we refer to [2], pp. 306-308. We realize the degenerate
series τ±k,α in another way. We consider the following action σ of GL(n,R) on R(n,k)

defined by

(2.19) σ(g)(x) := tg−1x, g ∈ GL(n,R), x ∈ R(n,k).

We let M(n, k;R)0 be the set of all n × k real matrices of rank k. For α ∈ C,
we let L±k,α be the space consisting of functions f : M(n, k;R)0 −→ C satisfying the
following condition

f(xa) =

{
(det a)αf(x) if det a > 0,

±|det a|αf(x) if det a < 0

for x ∈ M(n, k;R)0 and a ∈ GL(k,R). Then the action σ in (2.19) induces the
representation σ±k,α of GL(n,R) on L±k,α defined by

(
σ±k,α(g)f

)
(x) = f(σ(g−1)x) = f( tgx), g ∈ GL(n,R), x ∈ M(n, k;R)0.

Then we can show that τ±k,α is isomorphic to σ±k,α.

3. Unitary representations of GL(n,R)nR(m,n)

In this section, we find the unitary dual of GL(n,R)nR(m,n) using the Mackey’s
method and deal with certain unitary representations of GL(n,R)nR(m,n).

For brevity, we put

A := R(m,n), GLn := GL(n,R) and GLn,m := GL(n,R)nR(m,n).

The multiplication on GLn,m is given by

(3.1) (g, a) · (h, b) = (gh, a th−1 + b), (g, a), (h, b) ∈ GLn,m.

We may identify A with the subgroup {(In, a)| a ∈ A} of GLn,m. It is clear that A
is a commutative normal subgroup of GLn,m and the center of GLn,m consists only
of the identity element (In, 0). Moreover we have the split exact sequence

0 −→ A −→ GLn,m −→ GLn −→ 1.

We see that the unitary dual Â of A is isomorphic to A. Indeed, the unitary
character ρλ of A corresponding to λ ∈ A is defined by

(3.2) ρλ(a) := e2πiσ(tλa), a ∈ A.

For the time being, we write ga = (g, a) ∈ GLn,m for g ∈ GLn and a ∈ A,
and we identify an element g of GLn with an element (g, 0) in GLn,m. The group
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GLn,m acts on A by conjugation because A is a normal subgroup of GLn,m. This
induces the action of GLn,m on Â as follows:

(3.3) GLn,m × Â −→ Â, (ga, ρ) 7→ ρga ,

where ga ∈ GLn,m, ρ ∈ Â and the unitary character ρga of A is defined by

ρga
(b) := ρ(g−1

a bga), b ∈ A.

Since
g−1

a bga = (g, a)−1b(g, a) = (In, b tg−1) = g−1bg

for any g ∈ GLn and a, b ∈ A, we obtain

(3.4) ρga(b) = ρg(b) = ρ(b tg−1).

In particular, ρa = ρ for every element a ∈ A.

Lemma 3.1. The action of an element ga = (g, a) on an element ρλ of Â (cf. (3.2))
is given by

(3.5) ρga

λ = ρg
λ = ρλg−1 , λ ∈ A.

Proof. If b ∈ A, then

ρga

λ (b) = ρg
λ(b) = ρλ(b tg−1)

= e2πiσ( tλb tg−1)

= e2πiσ( t(λg−1)b)

= ρλg−1(b) (according to (3.2)).

If ρ ∈ Â, we denote by Ωρ the GLn,m-orbit of ρ and let

GLn,m(ρ) = {ga ∈ GLn,m| ρga = ρ}

be the stabilizer or isotrophy subgroup of GLn,m at ρ. Then the mapping defined
by

GLn,m/GLn,m(ρ) −→ Ωρ, ga ·GLn,m(ρ) −→ ρga

is a homeomorphism, in other words, A is regularly embedded. Obviously A is
a subgroup of GLn,m(ρ). We define the subset ̂GLn,m(ρ)∗ of the unitary dual
̂GLn,m(ρ) of GLn,m(ρ) by

̂GLn,m(ρ)∗ =
{

τ ∈ ̂GLn,m(ρ) | τ |A is a multiple of ρ
}

.

According to G. Mackey [4], we obtain the following.
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Theorem 3.2. For any τ ∈ ̂GLn,m(ρ)∗, the induced representation

Ind GLn,m

GLn,m(ρ)τ

is an irreducible unitary representation of GLn,m. And the unitary dual ̂GLn,m(ρ)
of GLn,m is given by

ĜLn,m =
⋃

[ρ]∈GLn,m\Â

{
Ind GLn,m

GLn,m(ρ)τ
∣∣∣τ ∈ ̂GLn,m(ρ)∗

}
.

We deal with the special cases n = 3, 4 explicitly. The other cases n ≥ 4 may
be dealt with similarly.

Case I. n = 2.

(I-1) m = 1.

In this case, A = R(1,2) ∼= R2. We identify the unitary dual Â of A with R2.
From (3.5), we see that GL2,1-orbits in Â consists of two orbits Ω0, Ω1 given by

Ω[21];0 = {(0, 0)}, Ω[21];1 = R2 − {(0, 0)}.

We observe that Ω[21];0 is the GL2,1-orbit of (0, 0) and Ω[22];1 is a GL2,1-orbit of
any element (λ, µ) 6= (0, 0).

Now we choose the element δ = ρ(1,0) of Â. That is, δ(x, y) = e2πix for x, y ∈ R2.
It is easily checked that the stabilizer of ρ(0,0) is GL2,1 and the stabilizer GL2,1(δ)
of δ is given by

GL2,1(δ) =
{((

1 0
c d

)
, α

)
∈ GL2,1

∣∣∣ c ∈ R, d ∈ R×, α ∈ R(1,2)

}
.

According to Theorem 3.2, we obtain
Theorem 3.3. Let n = 2 and m = 1. Then the irreducible unitary representations
of GL2,1 are the following:

(a) The irreducible unitary representation π, where the restriction of π to A is
trivial and the restriction of π to GL2 is an irreducible unitary representation
of GL2.

(b) The representation

πλ = Ind GL2,1

GL2,1(δ)
τλ (λ ∈ R)

induced from the irreducible unitary representation τλ of GL2,1(δ) such that
τλ|A is a multiple of δ.



316 Jae-Hyun Yang

(I-2) m = 2.

In this case, Â ∼= R(2,2). From now on, we identify Â with R(2,2).

Lemma 3.4. Let n = 2 and m = 2. Then the GL2,2-orbits in Â consist of the
following orbits

Ω[22];0 =
{(

0 0
0 0

)}
,

Ω[22];1 =
{(

A
0

)
∈ R(2,2)

∣∣∣ A ∈ R(1,2), A 6= 0
}

,

Ω[22];2 =
{(

0
A

)
∈ R(2,2)

∣∣∣ A ∈ R(1,2), A 6= 0
}

,

Ω[22];3(δ) =
{(

A
δA

)
∈ R(2,2)

∣∣∣ A ∈ R(1,2), A 6= 0
}

( δ ∈ R× )

and
Ω[22];4 = GL(2,R).

Ω[22];0 is the GL2,2-orbit of 0=
(

0 0
0 0

)
, Ω[22];1 is the GL2,2-orbit of

(
α
0

)
with 0 6=

α ∈ R(1,2), Ω[22];2 is the GL2,2-orbit of
(

0
β

)
with 0 6= β ∈ R(1,2), Ω[22];3(δ) is

the GL2,2-orbit of
(

α
δα

)
with 0 6= α ∈ R(1,2) and Ω[22];4 is the GL2,2-orbit of any

invertible matrix M ∈ GL(2,R).

Proof. Without difficulty we may prove the above lemma. We note that Ω[22];3(δ1) =
Ω[22];3(δ2) if and only if δ1 = δ2. So we leave the detail to the reader. ¤

We put

e =
(

1 0
0 0

)
and f =

(
0 0
1 0

)
.

Obviously e ∈ Ω[22];1 and f ∈ Ω[22];2.

Then we may prove the following lemma.
Lemma 3.5.

(a) The stabilizer of 0 is GL2,2.

(b) The stabilizer GL2,2(e) of e is given by

GL2,2(e) =
{((

1 0
c d

)
, α

) ∣∣∣ c ∈ R, d ∈ R×, α ∈ R(2,2)

}
.

For each x ∈ Ω[22];1, the stabilizer GL2,2(x) of x is conjugate to GL2,2(e).
Precisely if x = eg0 with g0 ∈ GL(2,R), then GL2,2(x) = (g0, 0)−1GL2,2(e)(g0, 0).
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(c) The stabilizer GL2,2(f) of f is given by

GL2,2(f) =
{((

1 0
c d

)
, α

) ∣∣∣ c ∈ R, d ∈ R×, α ∈ R(2,2)

}
.

For each y ∈ Ω[22];2, the stabilizer GL2,2(y) of y is conjugate to GL2,2(f).

(d) The stabilizer GL2,2(δ) of
(

1 0
δ 0

)
(δ ∈ R×) is given by

GL2,2(δ) =
{((

1 0
c d

)
, α

) ∣∣∣ c ∈ R, d ∈ R×, α ∈ R(2,2)

}
.

For each z ∈ Ω[22];3(δ), the stabilizer GL2,2(z) of z is conjugate to GL2,2(δ).

(e) The stabilizer GL2,2(M) of M ∈ Ω[22];4 is given by

GL2,2(M) =
{

(I2, α) | α ∈ R(2,2)
} ∼= R(2,2).

Therefore A is regularly embedded.

For λ ∈ R, we let χλ be the unitary character of R defined by χλ(a) :=
e2πiλa (a ∈ R) and for M ∈ R(2,2), we let τM be the unitary character of
A = R(2,2) defined by

(3.6) τM (X) := e2πi( tMX), X ∈ A.

According to Theorem 3.2, we obtain the following
Theorem 3.6. Let n = 2 and m = 2. Then the irreducible unitary representations
of GL2,2 are the following:

(a) The irreducible unitary representations π, where the restriction of π to A is
trivial and the restriction of π to GL(2,R) is an irreducible unitary represen-
tation of GL(2,R).

(b) The representations πλ;e := Ind GL2,2

GL2,2(e)
τλ,e (λ ∈ R) induced from the irre-

ducible unitary representation τλ,e of GL2,2(e) whose restriction to A is a
multiple of τe (cf. (3.6)). In fact, τλ,e of the form

τλ,e

(((
1 0
c d

)
,

(
α1 α2

α3 α4

)))
= e2πα1

(
Ind RoR×

R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α4 ∈ R, d ∈ R×.

(c) The representations πλ;f := Ind GL2,2

GL2,2(f)
θλ,f (λ ∈ R) induced from the irre-

ducible unitary representation θλ,f of GL2,2(f) whose restriction to A is a
multiple of τf (cf. (3.6)). Indeed, θλ,f is of the form

θλ,f

(((
1 0
c d

)
,

(
α1 α2

α3 α4

)))
= e2πiα3

(
Ind RoR×

R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α4 ∈ R, d ∈ R×.



318 Jae-Hyun Yang

(d) The representations πλ;δ := Ind GL2,2

GL2,2(δ)
θλ,δ (λ ∈ R, δ ∈ R×, r ∈ R) induced

from the irreducible unitary representation σλ,δ of GL2,2(δ). Indeed, σλ,δ is
of the form

σλ,δ

(((
1 0
c d

)
,

(
α1 α2

α3 α4

)))
= e2πi(α1+α3δ)

(
Ind RoR×

R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α4 ∈ R, d ∈ R×.

(e) The representations πM := Ind GL2,2
A τM (M ∈ GL(2,R)) of GL2,2 induced

from the unitary character τM of A defined by τM (X) = e2πiσ(MX), X ∈ A.

Proof. We leave the detail of the proof to the reader. ¤

(I-3) m > 2.
This case is more complicated than the above cases. Here we consider only the

case m = 3. The other case m ≥ 4 may be dealt similarly.

Lemma 3.7. Let n = 2 and m = 3. That is, A = R(3,2). Then the GL2,3-orbits in
Â are given by

Ω[23];0 =








0 0
0 0
0 0






 ,

Ω[23];1 =








A
0
0


 ∈ R(3,2)

∣∣∣ A ∈ R(1,2), A 6= 0



 ,

Ω[22];2 =








0
A
0


 ∈ R(3,2)

∣∣∣ A ∈ R(1,2), A 6= 0



 ,

Ω[23];3 =








0
0
A


 ∈ R(3,2)

∣∣∣ A ∈ R(1,2), A 6= 0



 ,

Ω[23](1; δ) =








0
A
δ A


 ∈ R(3,2)

∣∣∣ A ∈ R(1,2), A 6= 0



 (δ ∈ R×),

Ω[23](2; δ) =








A
0

δ A


 ∈ R(3,2)

∣∣∣ A ∈ R(1,2), A 6= 0



 (δ ∈ R×),

Ω[23](3; δ) =








A
δ A
0


 ∈ R(3,2)

∣∣∣ A ∈ R(1,2), A 6= 0



 (δ ∈ R×),
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Ω[23](λ, µ) =








A
λA
µA


 ∈ R(3,2)

∣∣∣ A ∈ R(1,2), A 6= 0



 (λ, µ ∈ R×)

and

Ω12(λ, µ) =








A
B

λA + µB


 ∈ R(3,2)

∣∣∣
(

A
B

)
∈ GL2



 (λ, µ ∈ R),

Ω13(λ, µ) =








A
λA + µB

B


 ∈ R(3,2)

∣∣∣
(

A
B

)
∈ GL2



 (λ, µ ∈ R),

Ω23(λ, µ) =








λA + µB
A
B


 ∈ R(3,2)

∣∣∣
(

A
B

)
∈ GL2



 (λ, µ ∈ R).

Proof. It is easy to prove the above lemma. We leave the proof to the reader. ¤

We put

e1 =




1 0
0 0
0 0


 , e2 =




0 0
1 0
0 0


 , e3 =




0 0
0 0
1 0




and for each δ, λ, µ ∈ R×

f1,δ =




0 0
1 0
δ 0


 , f2,δ =




1 0
0 0
δ 0


 , f3,δ =




1 0
δ 0
0 0


 ,

fλ,µ =




1 0
λ 0
µ 0


 .

We also set for each (λ, µ) ∈ R2,

h12(λ, µ) =




1 0
0 1
λ µ


 , h13(λ, µ) =




1 0
λ µ
0 1




and

h23(λ, µ) =




λ µ
1 0
0 1


 .

We note that 0∈ Ω[23];0, ei ∈ Ω[23];i (i = 1, 2, 3), fj,δ ∈ Ω[23](j; δ) (j =
1, 2, 3), fλ,µ ∈ Ω[23](λ, µ), h12(λ, µ) ∈ Ω12(λ, µ), h13(λ, µ) ∈ Ω13(λ, µ), h23(λ, µ) ∈
Ω23(λ, µ).

Then we may prove the following lemma without difficulty.

Lemma 3.8.
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(a) The stabilizer of 0 is GL2,3.

(b) Let GL2,3(i) be the stabilizer of ei (i = 1, 2, 3). Then

GL2,3(i) =
{((

1 0
c d

)
, α

) ∣∣ c ∈ R, d ∈ R×, α ∈ R(3,2)

}
, i = 1, 2, 3.

(c) For δ ∈ R×, we let GL2,3(i; δ) be the stabilizer of fi,δ (i = 1, 2, 3). Then

GL2,3(i, δ) =
{((

1 0
c d

)
, α

) ∣∣ c ∈ R, d ∈ R×, α ∈ R(3,2)

}
, i = 1, 2, 3.

(d) For any λ, µ ∈ R×, we let GL2,3(λ, µ) be the stabilizer of fλ,µ. Then

GL2,3(λ, µ) =
{((

1 0
c d

)
, α

) ∣∣ c ∈ R, d ∈ R×, α ∈ R(3,2)

}
(λ, µ ∈ R×).

(e) For any λ, µ ∈ R×, we let GL2,3(12; λ, µ), GL2,3(13; λ, µ), GL2,3(23;λ, µ) be
the stabilizers of h12(λ, µ), h13(λ, µ), h23(λ, µ) respectively. Then

GL2,3(12; λ, µ) = GL2,3(13; λ, µ) = GL2,3(23; λ, µ) =
{

(I2, α) | α ∈ R(3,2)
}

.

Therefore we see easily that A is regularly embedded.

According to Theorem 3.2, we obtain the following.

Theorem 3.9. Let n = 2 and m = 3. Then the irreducible unitary representations
of GL2,3 are the following:

(a) The irreducible unitary representations π, where the restriction of π to A is
trivial and the restriction of π to GL(2,R) is an irreducible unitary represen-
tation of GL(2,R).

(b) The representations π1,λ := Ind GL2,3

GL2,3(1)
τ1,λ (λ ∈ R) induced from the unitary

representation τ1,λ of GL2,3(1) defined by

τ1,λ







(
1 0
c d

)
,




α1 α2

α3 α4

α5 α6








 = e2πiα1

(
IndRoR

×
R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α6 ∈ R and d ∈ R×.

(c) The representations π2,λ := Ind GL2,3

GL2,3(2)
τ2,λ (λ ∈ R) induced from the unitary

representation τ2,λ of GL2,3(2) defined by

τ2,λ







(
1 0
c d

)
,




α1 α2

α3 α4

α5 α6








 = e2πiα3 ·

(
IndRoR

×
R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α6 ∈ R and d ∈ R×.
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(d) The representations π3,λ := Ind GL2,3

GL2,3(3)
τ3,λ (λ ∈ R) induced from the unitary

representation τ3,λ of GL2,3(3) defined by

τ3,λ







(
1 0
c d

)
,




α1 α2

α3 α4

α5 α6








 = e2πiα5 ·

(
IndRoR

×
R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α6 ∈ R and d ∈ R×.

(e) The representations π(1,δ),λ := Ind GL2,3

GL2,3(1;δ)
τ(1,δ),λ (δ ∈ R×, λ ∈ R) induced

from the unitary representation τ(1,δ),λ of GL2,3(1; δ) defined by

τ(1,δ),λ







(
1 0
c d

)
,




α1 α2

α3 α4

α5 α6








 = e2πi(α3+δα5)·

(
IndRoR

×
R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α6 ∈ R and d ∈ R×.

(f) The representations π(2,δ),λ := Ind GL2,3

GL2,3(2;δ)
τ(2,δ),λ (δ ∈ R×, λ ∈ R) induced

from the unitary representation τ(2,δ),λ of GL2,3(2; δ) defined by

τ(2,δ),λ







(
1 0
c d

)
,




α1 α2

α3 α4

α5 α6








 = e2πi(α1+δα5)·

(
IndRoR

×
R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α6 ∈ R and d ∈ R×.

(g) The representations π(3,δ),λ := Ind GL2,3

GL2,3(3;δ)
τ(3,δ),λ (δ ∈ R×, λ ∈ R) induced

from the unitary representation τ(3,δ),λ of GL2,3(3; δ) defined by

τ(3,δ),λ







(
1 0
c d

)
,




α1 α2

α3 α4

α5 α6








 = e2πi(α1+δα3)·

(
IndRoR

×
R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α6 ∈ R and d ∈ R×.

(h) The representations π(r;λ,µ) := Ind GL2,3

GL2,3(λ,µ)τ(λ,µ),r (r ∈ R, λ, µ ∈ R×) in-
duced from the unitary representation τ(λ,µ),r of GL2,3(λ, µ) defined by

τ(λ,µ),r







(
1 0
c d

)
,




α1 α2

α3 α4

α5 α6








 = e2πi(α1+λα3+µα5)·

(
IndRoR

×
R χλ

) ((
1 0
c d

))
,

where c, α1, · · · , α6 ∈ R and d ∈ R×.
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(i) The representations π(12;λ,µ) := Ind GL2,3

GL2,3(12;λ,µ)τ(12;λ,µ) (λ, µ ∈ R) induced
from the unitary representation τ(12;λ,µ) of GL2,3(12;λ, µ) defined by

τ(12;λ,µ)





I2,




α1 α2

α3 α4

α5 α6








 = e2πi(α1+λα5+(α4+µα6)), α1, · · · , α6 ∈ R.

(j) The representations π(13;λ,µ) := Ind GL2,3

GL2,3(13;λ,µ)τ(13;λ,µ) (λ, µ ∈ R) induced
from the unitary representation τ(13;λ,µ) of GL2,3(13;λ, µ) defined by

τ(13;λ,µ)





I2,




α1 α2

α3 α4

α5 α6








 = e2πi(α1+λα3+(α6+µα4)), α1, · · · , α6 ∈ R.

(k) The representations π(23;λ,µ) := Ind GL2,3

GL2,3(23;λ,µ)τ(23;λ,µ) (λ, µ ∈ R) induced
from the unitary representation τ(23;λ,µ) of GL2,3(23;λ, µ) defined by

τ(23;λ,µ)





I2,




α1 α2

α3 α4

α5 α6








 = e2πi(α3+λα1+(α6+µα2)), α1, · · · , α6 ∈ R.

Proof. We leave the detail of the proof to the reader. ¤
Case II. n = 3.

(II-1) m = 1.

In this case, A ∼= R(1,3) = R3. We identify the unitary dual Â of A with R3.
According to (3.5), we see that GL3,1-orbits in Â consists of two orbits Ω[31];0, Ω[31];1

given by
Ω0 = {(0, 0, 0)}, Ω1 = R3 − {(0, 0, 0)}.

We note that Ω0 is the GL3,1-orbit of (0, 0, 0) and Ω1 is a GL3,1-orbit of any element
different from (0, 0, 0). We put e = (1, 0, 0). Then the stabilizer GL3,1(e) of e is
given by

GL3,1(e) =
{((

1 0
a g

)
, α

)
∈ GL3,1

∣∣ a ∈ R(2,1), g ∈ GL2, α ∈ R(1,3)

}
.

According to Theorem 3.2, we obtain the following.

Theorem 3.10. Let n = 3 and m = 1. Then the irreducible unitary representations
of GL3,1 are the following:

(a) The irreducible unitary representation π, where the restriction of π to A is
trivial and the restriction of π to GL3 is an irreducible unitary representation
of GL3.
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(b) The representation πν := IndGL3,1

GL3,1(e)
σν induced from the unitary representa-

tion σν of GL3,1(e) defined by

σ

((
1 0
a g

)
, (α1, α2, α3)

)
= e2πiα1

(
IndR

2nGL2
R2 θν

) ((
1 0
a g

))
,

where θν (ν ∈ R2) is the unitary character of R2 defined by θν(a) =
e2πi( tνa) (a ∈ R2). We note that GL3,1(e) is isomorphic to the group
R2 n GL2

∼= GL2,1. We already dealt with the unitary representations of
GL2,1.

(II-2) m = 2.

In this case, A ∼= R(2,3) ∼= Â.

Lemma 3.11. Let n = 3 and m = 2. Then the GL3,2-orbits in Â consist of the
following orbits:

Ω[32];0 =
{(

0 0 0
0 0 0

)}
,

Ω[32];1 =
{(

A
0

)
∈ R(2,3)

∣∣∣ A ∈ R(1,3), A 6= 0
}

,

Ω[32];2 =
{(

0
A

)
∈ R(2,3)

∣∣∣ A ∈ R(1,3), A 6= 0
}

,

Ω[32];3(δ) =
{(

A
δA

)
∈ R(2,3)

∣∣∣ A ∈ R(1,3), A 6= 0
}

( δ ∈ R× )

and
Ω[32];4 =

{
M ∈ R(2,3) | rankM = 2

}
.

Ω[32];0 is the GL3,2-orbit of 0=
(

0 0 0
0 0 0

)
, Ω[32];1 is the GL3,2-orbit of

(
α
0

)
with

0 6= α ∈ R(1,3), Ω[32];2 is the GL3,2-orbit of
(

0
β

)
with 0 6= β ∈ R(1,3), Ω[32];3(δ) is

the GL3,2-orbit of
(

α
δα

)
with 0 6= α ∈ R(1,3) and Ω[32];4 is the GL3,2-orbit of any

invertible matrix M ∈ R(2.3) with rankM = 2.

Proof. Without difficulty we may prove the above lemma. We note that Ω[32];3(δ1) =
Ω[32];3(δ1). So we leave the detail to the reader. ¤

We put

e∗ =
(

1 0 0
0 0 0

)
and f∗ =

(
0 0 0
1 0 0

)
.

Obviously e∗ ∈ Ω[32];1 and f∗ ∈ Ω[32];2.
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Then we may prove the following lemma.

Lemma 3.12.

(a) The stabilizer of 0 is GL3,2.

(b) The stabilizer GL3,2(e∗) of e is given by

(3.7) GL3,2(e∗) =
{((

1 0
α g

)
, α

) ∣∣∣ a ∈ R(2,1), g ∈ GL2, α ∈ R(2,3)

}
.

For each x ∈ Ω[32];1, the stabilizer GL3,2(x) of x is conjugate to GL3,2(e∗).
Precisely if x = e∗g0 with g0 ∈ GL3, then GL3,2(x) = (g0, 0)−1GL3,2(e∗)(g0, 0).

(c) The stabilizer GL3,2(f∗) of f∗ is given by (3.6).

(d) The stabilizer GL3,2(δ) of
(

1 0 0
δ 0 0

)
(δ ∈ R×) is given by (3.6).

(e) The stabilizer GL3,2(M) of M ∈ Ω[32];4 is given by

GL3,2(M) =











1 0 0
0 1 0
a b c


 , α




∣∣∣∣∣ a, b ∈ R, c ∈ R×, α ∈ R(2,3)



 .

Therefore A is regularly embedded.

According to Theorem 3.2, we obtain the following.

Theorem 3.13. Let n = 3 and m = 2. Then the irreducible unitary representations
of GL3,2 are the following:

(a) The irreducible unitary representations ρ, where the restriction of ρ to A is
trivial and the restriction of ρ to GL3 is an irreducible unitary representation
of GL3.

(b) The representations ρe∗ := IndGL3,2

GL3,2(e∗)
τe∗ induced from the irreducible uni-

tary representation τe∗ of GL3,2(e∗). Here τe∗ is of the form

τe∗

((
1 0
a g

)
,

(
α1 α2 α3

α4 α5 α6

))
= e2πα1 · π

((
1 0
a g

))
,

where π is an irreducible unitary representation of R2oGL2 given by Theorem
3.3.

(c) The representations ρf∗ := IndGL3,2

GL3,2(f ∗)
τf∗ induced from the irreducible uni-

tary representation τf∗ of GL3,2(f∗). Here τf∗ is of the form

τf∗

((
1 0
a g

)
,

(
α1 α2 α3

α4 α5 α6

))
= e2πα4 · π

((
1 0
a g

))
,

where π is an irreducible unitary representation of R2oGL2 given by Theorem
3.3.



Harmonic Analysis on Pn × R(m,n), II 325

(d) The representations ρδ := IndGL3,2

GL3,2(δ)
τδ induced from the irreducible unitary

representation τδ of GL3,2(δ) defined by

τδ

((
1 0
a g

)
,

(
α1 α2 α3

α4 α5 α6

))
= e2πα1+δα4 · π

((
1 0
a g

))
,

where π is an irreducible unitary representation of R2oGL2 given by Theorem
3.3.

(e) The representations ρM := IndGL3,2

GL3,2(M )τM (M ∈ R(2,3) with rankM = 2) of
GL3,2 induced from the unitary character τM of GL3,2(M) defined by

τM (X)







1 0 0
0 1 0
a b c


 ,

(
α1 α2 α3

α4 α5 α6

)
 = e2πi(α1+α5) ·πM







1 0 0
0 1 0
a b c





 ,

where πM is an irreducible unitary representation of R2 oGL1.

Proof. We leave the detail of the proof to the reader. ¤

(II-3) m = 3.

In this case, A = R(3,3).

Lemma 3.14. Let n = 3 and m = 3. That is, A = R(3,3). Then the GL3,3-orbits
in Â consist of the following orbits:

Ω[33];0 =








0 0 0
0 0 0
0 0 0






 ,

Ω[33];1 =








A
0
0


 ∈ R(3,3)

∣∣∣ A ∈ R(1,3), A 6= 0



 ,

Ω[33];2 =








0
A
0


 ∈ R(3,3)

∣∣∣ A ∈ R(1,3), A 6= 0



 ,

Ω[33];3 =








0
0
A


 ∈ R(3,3)

∣∣∣ A ∈ R(1,3), A 6= 0



 ,

Ω[33](1; δ) =








0
A
δ A


 ∈ R(3,3)

∣∣∣ A ∈ R(1,3), A 6= 0



 (δ ∈ R×),

Ω[33](2; δ) =








A
0

δ A


 ∈ R(3,3)

∣∣∣ A ∈ R(1,3), A 6= 0



 (δ ∈ R×),
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Ω[33](3; δ) =








A
δ A
0


 ∈ R(3,3)

∣∣∣ A ∈ R(1,3), A 6= 0



 (δ ∈ R×),

Ω[33](λ, µ) =








A
λA
µA


 ∈ R(3,3)

∣∣∣ A ∈ R(1,3), A 6= 0



 (λ, µ ∈ R×)

and

Ω12;λ,µ =








A
B

λA + µB


 ∈ R(3,3)

∣∣∣ rank
(

A
B

)
= 2



 (λ, µ ∈ R),

Ω13;λ,µ =








A
λA + µB

B


 ∈ R(3,3)

∣∣∣ rank
(

A
B

)
= 2



 (λ, µ ∈ R),

Ω23;λ,µ =








λA + µB
A
B


 ∈ R(3,3)

∣∣∣ rank
(

A
B

)
= 2



 (λ, µ ∈ R),

Ω[33];∗ = GL3.

Proof. It is easy to prove the above lemma. We leave the proof to the reader. ¤
We put

θ1 =




1 0 0
0 0 0
0 0 0


 , θ2 =




0 0 0
1 0 0
0 0 0


 , θ3 =




0 0 0
0 0 0
1 0 0




and for each δ, λ, µ ∈ R×

θ1,δ =




0 0 0
1 0 0
δ 0 0


 , θ2,δ =




1 0 0
0 0 0
δ 0 0


 , θ3,δ =




1 0 0
δ 0 0
0 0 0


 ,

θλ,µ =




1 0 0
λ 0 0
µ 0 0


 .

We also set for each λ, µ ∈ R×,

φ12;λ,µ =




1 0 0
0 1 0
λ µ 0


 , φ13;λ,µ =




1 0 0
λ µ 0
0 1 0


 and φ23;λ,µ =




λ µ 0
1 0 0
0 1 0


 .

We note that θi ∈ Ω[34];i (i = 1, 2, 3), θj,δ ∈ Ω[33](j; δ) (j = 1, 2, 3), θλ,µ ∈
Ω[33](λ, µ), φ12;λ,µ ∈ Ω12;λ,µ, φ13;λ,µ ∈ Ω13;λ,µ, φ23;λ,µ ∈ Ω23;λ,µ.
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Then by a simple calculation, we may prove the following lemma without diffi-
culty.

Lemma 3.15.

(a) The stabilizer of 0 is GL3,3.

(b) The stabilizer GL3,3(1) of θ1 is given by

GL3,3(1) =
{((

1 0
a g

)
, α

) ∣∣∣ a ∈ R(2,1), g ∈ GL2, α ∈ R(3,3)

}
.

(c) The stabilizer GL3,3(2) of θ2 is given by

GL3,3(2) =










∗ ∗ ∗
0 1 0
∗ ∗ ∗


 , α


 ∈ GL3,3

∣∣∣ α ∈ R(3,3)



 .

(d) The stabilizer GL3,3(3) of θ3 is given by

GL3,3(3) =
{((

g a
0 1

)
, α

) ∣∣∣ a ∈ R(2,1), g ∈ GL2, α ∈ R(3,3)

}
.

(e) The stabilizer GL3,3(i; δ) of θi;δ(i = 1, 2, 3) is given by

GL3,3(i; δ) =
{((

1 0
a g

)
, α

) ∣∣∣ a ∈ R(2,1), g ∈ GL2, α ∈ R(3,3)

}
.

(f) The stabilizer GL3,3(λ, µ) of θλ,µ is given by

GL3,3(λ, µ) =
{((

1 0
a g

)
, α

) ∣∣∣ a ∈ R(2,1), g ∈ GL2, α ∈ R(3,3)

}
.

(g) The stabilizers GL3,3(12; λ, µ), GL3,3(13; λ, µ), GL3,3(23; λ, µ) of φ12;λ,µ, φ13;λ,µ,
φ23;λ,µ respectively are given by

GL3,3(12; λ, µ) = GL3,3(13; λ, µ) = GL3,3(23; λ, µ)

=











1 0 0
0 1 0
a b c


 , α


 ∈ GL3,3

∣∣∣∣∣ a, b ∈ R, c ∈ R×, α ∈ R(3,3)



 .

(h) The stabilizer of I3 is {(I3, 0)| α ∈ R(3,3)} ∼= A.

According to Theorem 3.2, we obtain the following.

Theorem 3.16. Let n = 3 and m = 3. Then irreducible unitary representations of
GL3,3 are the following.
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(a) The irreducible unitary representations ρ, where the restriction of ρ to A is
trivial and the restriction of ρ to GL3 is an irreducible unitary representation
of GL3.

(b) The representation ρθ1 := Ind GL3,3

GL3,3(1)
τθ1 induced from the unitary represen-

tation τθ1 of GL3,3(1). Here τθ1 is of the form

τθ1




(
1 0
a g

)
,




α1 α2 α3

α4 α5 α6

α7 α8 α9





 = e2πiα1 · πθ1

((
1 0
a g

))
,

where πθ1 is the irreducible unitary representation of R2nGL2 given by The-
orem 3.3.

(c) The representation ρθ2 := Ind GL3,3

GL3,3(2)
τθ2 induced from the unitary represen-

tation τθ2 of GL3,3(2). Here τθ2 is of the form

τθ2







g11 g12 g13

0 1 0
g31 g32 g33


 ,




α1 α2 α3

α4 α5 α6

α7 α8 α9





 = e2πiα5 ·πθ2







g11 g12 g13

0 1 0
g31 g32 g33





 ,

where πθ2 is the irreducible unitary representation of R2nGL2 given by The-
orem 3.3.

(d) The representation ρθ3 := Ind GL3,3

GL3,3(3)
τθ3 induced from the unitary represen-

tation τθ3 of GL3,3(3). Here τθ3 is of the form

τθ3




(
1 0
a g

)
,




α1 α2 α3

α4 α5 α6

α7 α8 α9





 = e2πiα9 · πθ3

((
1 0
a g

))
,

where πθ3 is the irreducible unitary representation of R2nGL2 given by The-
orem 3.3.

(e) The representation ρ1,δ := Ind GL3,3

GL3,3(1;δ)
τ1,δ induced from the unitary repre-

sentation τ1,δ of GL3,3(1, δ). Here τ1,δ is of the form

τ1,δ




(
1 0
a g

)
,




α1 α2 α3

α4 α5 α6

α7 α8 α9





 = e2πi(α4+δα7) · π1,δ

((
1 0
a g

))
,

where π1,δ is the irreducible unitary representation of R2 n GL2 given by
Theorem 3.3.

(f) The representation ρ2,δ := Ind GL3,3

GL3,3(2;δ)
τ2,δ induced from the unitary repre-

sentation τ2,δ of GL3,3(2, δ). Here τ1,δ is of the form

τ2,δ




(
1 0
a g

)
,




α1 α2 α3

α4 α5 α6

α7 α8 α9





 = e2πi(α1+δα7) · π2,δ

((
1 0
a g

))
,
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where π2,δ is the irreducible unitary representation of R2 n GL2 given by
Theorem 3.3.

(g) The representation ρ3,δ := Ind GL3,3

GL3,3(3,δ)τ1,δ induced from the unitary repre-
sentation τ1,δ of GL3,3(3, δ). Here τ3,δ is of the form

τ3,δ




(
1 0
a g

)
,




α1 α2 α3

α4 α5 α6

α7 α8 α9





 = e2πi(α1+δα4) · π3,δ

((
1 0
a g

))
,

where π3,δ is the irreducible unitary representation of R2 n GL2 given by
Theorem 3.3.

(h) The representation ρλ,µ := Ind GL3,3

GL3,3( µ)τλ,µ induced from the unitary repre-
sentation τλ,µ of GL3,3(λ, µ). Here τλ,µ is of the form

τλ,µ




(
1 0
a g

)
,




α1 α2 α3

α4 α5 α6

α7 α8 α9





 = e2πi(α1+λα4+µα7) · πλ,µ

((
1 0
a g

))
,

where πλ,µ is the irreducible unitary representation of R2 n GL2 given by
Theorem 3.3.

(i) The representation ρ12;λ,µ := Ind GL3,3

GL3,3(12;λ,µ)τ12;λ,µ induced from the unitary
representation τ12;λ,µ of GL3,3(12; λ, µ). Here τ12;λ,µ is of the form

τ12;λ,µ







1 0 0
0 1 0
a b c


 ,




α1 α2 α3

α4 α5 α6

α7 α8 α9







= e2πi(α1+α5+λα7+µα8) · π12;λ,µ







1 0 0
0 1 0
a b c





 ,

where π12;λ,µ is the irreducible unitary representation of R2 n GL1 given by
Theorem 3.3.

(j) The representation ρ13;λ,µ := Ind GL3,3

GL3,3(13;λ,µ)τ13;λ,µ induced from the unitary
representation τ13;λ,µ of GL3,3(13; λ, µ). Here τ13;λ,µ is of the form

τ13;λ,µ







1 0 0
0 1 0
α b c


 ,




α1 α2 α3

α4 α5 α6

α7 α8 α9







= e2πi(α1+α8+λα4+µα5) · π13;λ,µ







1 0 0
0 1 0
α b c





 ,

where π13;λ,µ is the irreducible unitary representation of R2 nGL1.
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(k) The representation ρ23;λ,µ := Ind GL3,3

GL3,3(23;λ,µ)τ23;λ,µ induced from the unitary
representation τ23;λ,µ of GL3,3(23; λ, µ). Here τ23;λ,µ is of the form

τ23;λ,µ







1 0 0
0 1 0
a b c


 ,




α1 α2 α3

α4 α5 α6

α7 α8 α9







= e2πi(α4+α8+λα1+µα2) · π23;λ,µ







1 0 0
0 1 0
a b c





 ,

where π23;λ,µ is the irreducible unitary representation of R2 nGL1.

(l) The representation ρI3 := IndGL3,3
A χI3 induced from the unitary character χI3

of A given by

χI3







α1 α2 α3

α4 α5 α6

α7 α8 α9





 = e2πi(α1+α5+α9).

(II-4) m = 4.

In this case, A = R(4,3).

Lemma 3.17. Let n = 3 and m = 4. Then the GL3,4-orbits in Â consists of the
following orbits:

Ω[34];0 = {0},

Ω[34];1 =








A
0
0
0


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





,

Ω[34];2 =








0
A
0
0


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





,

Ω[34];3 =








0
0
A
0


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





,

Ω[34];4 =








0
0
0
A


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





,
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Ω12;δ =








0
0
A
δA


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(δ ∈ R×),

Ω13;δ =








0
A
0

δA


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(δ ∈ R×),

Ω14;δ =








0
A
δA
0


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(δ ∈ R×),

Ω23;δ =








A
0
0

δA


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(δ ∈ R×),

Ω24;δ =








A
0

δA
0


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(δ ∈ R×),

Ω34;δ =








A
δA
0
0


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(δ ∈ R×),

Ω1;λ,µ =








0
A
λA
µA


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(λ, µ ∈ R×),

Ω2;λ,µ =








A
0

λA
µA


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(λ, µ ∈ R×),

Ω3;λ,µ =








A
λA
0

µA


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(λ, µ ∈ R×),

Ω4;λ,µ =








A
λA
µA
0


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(λ, µ ∈ R×),

Ωλ,µ,κ =








A
λA
µA
κA


 ∈ R(4,3)

∣∣∣∣∣ A ∈ R(1,3), A 6= 0





(λ, µ, κ ∈ R×)
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and for any λ, µ, κ, δ ∈ R,

Ω12;λ,µ,κ,δ =








A
B

λA + µB
κA + δB


 ∈ R(4,3)

∣∣∣∣∣ rank
(

A
B

)
= 2





,

Ω14;λ,µ,κ,δ =








A
λA + µB
κA + δB

B


 ∈ R(4,3)

∣∣∣∣∣ rank
(

A
B

)
= 2





,

Ω23;λ,µ,κ,δ =








λA + µB
A
B

κA + δB


 ∈ R(4,3)

∣∣∣∣∣ rank
(

A
B

)
= 2





,

Ω24;λ,µ,κ,δ =








λA + µB
A

κA + δB
B


 ∈ R(4,3)

∣∣∣∣∣ rank
(

A
B

)
= 2





,

Ω34;λ,µ,κ,δ =








λA + µB
κA + δB

A
B


 ∈ R(4,3)

∣∣∣∣∣ rank
(

A
B

)
= 2





,

Ω123;λ,µ,κ =








A
B
C

λA + µB + κC


 ∈ R(4,3)

∣∣∣∣∣ rank




A
B
C


 = 3





,

Ω124;λ,µ,κ =








A
B

λA + µB + κC
C


 ∈ R(4,3)

∣∣∣∣∣ rank




A
B
C


 = 3





,

Ω134;λ,µ,κ =








A
λA + µB + κC

B
C


 ∈ R(4,3)

∣∣∣∣∣ rank




A
B
C


 = 3





,

Ω234;λ,µ,κ =








λA + µB + κC
A
B
C


 ∈ R(4,3)

∣∣∣∣∣ rank




A
B
C


 = 3





.
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We put

ξ1 =




1 0 0
0 0 0
0 0 0
0 0 0


 , ξ2 =




0 0 0
1 0 0
0 0 0
0 0 0


 ,

ξ3 =




0 0 0
0 0 0
1 0 0
0 0 0


 , ξ4 =




0 0 0
0 0 0
0 0 0
1 0 0




and for each δ ∈ R×, we set

ξ12;δ =




1 0 0
δ 0 0
0 0 0
0 0 0


 , ξ13;δ =




1 0 0
0 0 0
δ 0 0
0 0 0


 ,

ξ14;δ =




1 0 0
0 0 0
0 0 0
δ 0 0


 , ξ23;δ =




0 0 0
1 0 0
δ 0 0
0 0 0


 ,

ξ24;δ =




0 0 0
1 0 0
0 0 0
δ 0 0


 , ξ34;δ =




0 0 0
0 0 0
1 0 0
δ 0 0


 .

For any λ, µ, κ ∈ R×, we put

ξ1;λ,µ =




0 0 0
1 0 0
λ 0 0
µ 0 0


 , ξ2;λ,µ =




1 0 0
0 0 0
λ 0 0
µ 0 0


 ,

ξ3;λ,µ =




1 0 0
λ 0 0
0 0 0
µ 0 0


 , ξ4;λ,µ =




1 0 0
λ 0 0
µ 0 0
0 0 0




and

ξλ,µ,κ =




1 0 0
λ 0 0
µ 0 0
κ 0 0


 .
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We also put for any λ, µ, κ, δ ∈ R,

ξ12;λ,µ,κ,δ =




1 0 0
0 1 0
λ µ 0
κ δ 0


 , ξ13;λ,µ,κ,δ =




1 0 0
λ µ 0
κ δ 0
0 1 0


 ,

ξ14;λ,µ,κ,δ =




1 0 0
λ µ 0
κ δ 0
0 1 0


 , ξ23;λ,µ,κ,δ =




λ µ 0
1 0 0
0 1 1
κ δ 0




and

ξ24;λ,µ,κ,δ =




λ µ 0
1 0 0
κ δ 0
0 1 0


 .

Lemma 3.18.

(a) The stabilizer of 0 is GL3,4.

(b) The stabilizer GL3,4(i) of ξi (i = 1, 2, 3, 4) is given by

(3.8)

{((
1 0
a g

)
, α

)
∈ GL3,4

∣∣∣∣∣ a ∈ R(2,1), g ∈ GL2, α ∈ R(4,3)

}
.

(c) The stabilizer GL3,4(ij; δ) of ξij;δ (1 ≤ i ≤ j ≤ 4) is given by (3.7).

(d) The stabilizer GL3,4(i; λ, µ) of ξi;λ,µ (1 ≤ i ≤ 4) is given by (3.7).

(e) The stabilizer GL3,4(λ, µ, κ) of ξλ,µ,κ is given by (3.7).

(f) The stabilizer GL3,4(ij; λ, µ, κ, δ) of ξij;λ,µ,κ,δ (1 ≤ i ≤ j ≤ 4) is given by










1 0 0
0 1 0
a b c


 , α


 ∈ GL3,4

∣∣∣∣∣ a, b, c(6= 0) ∈ R, α ∈ R(4,3)



 .

According to Theorem 3.2, we obtain the following.

Theorem 3.19. Let n = 3 and m = 4. We put

α = (αij) =




α11 α12 α13

α21 α22 α23

α31 α32 α33

α41 α42 α43


 ∈ R(4,3).

Then the irreducible unitary representations of GL3,4 are the following:
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(a) The irreducible unitary representation ρ, where the restriction of ρ to A is
trivial and the restriction of ρ to GL3 is an irreducible unitary representation
of GL3.

(b) The representation ρξi
:= Ind GL3,4

GL3,4(i)
τξi

(1 ≤ i ≤ 4) induced from the unitary
irreducible representation τξi

of GL3,4(i). Here τξi
is of the form

τξi

((
1 0
a g

)
, (αij)

)
= e2πiα31 · πξi

((
1 0
a g

))
,

where πξi
is the irreducible unitary representation of R2 nGL2.

(c) The representation ρξij ;δ := Ind GL3,4

GL3,4(ij ;δ)
τξij ;δ (1 ≤ i ≤ j ≤ 4) induced from

the unitary irreducible representation τξij;δ of GL3,4(ij; δ). Here τξij;δ is of
the form

τξij;δ

((
1 0
a g

)
, (αij)

)
= e2πi(αi1+δαj1) · πξ34;δ

((
1 0
a g

))
,

where πξ34;δ is the irreducible unitary representation of R2 nGL2.

(d) The representation ρ(ξ1;λ,µ) := Ind GL3,4

GL3,4(1;λ,µ)τ(ξ1;λ,µ) induced from the uni-
tary irreducible representation τ(ξ1;λ,µ) of GL3,4(1; λ, µ). Here τ(ξ1;λ,µ) is of
the form

τ(ξ1;λ,µ)
((

1 0
a g

)
, (αij)

)
= e2πi(α21+λα31+µα41) · π(ξ1;λ,µ)

((
1 0
a g

))
,

where π(ξ1;λ,µ) is the irreducible unitary representation of R2 nGL2.

(e) The representation ρ(ξ2;λ,µ) := Ind GL3,4

GL3,4(2;λ,µ)τ(ξ2;λ,µ) induced from the uni-
tary irreducible representation τ(ξ2;λ,µ) of GL3,4(2; λ, µ). Here τ(ξ2;λ,µ) is of
the form

τ(ξ2;λ,µ)
((

1 0
a g

)
, (αij)

)
= e2πi(α11+λα31+µα41) · π(ξ2;λ,µ)

((
1 0
a g

))
,

where π(ξ2;λ,µ) is the irreducible unitary representation of R2 nGL2.

(f) The representation ρ(ξ3;λ,µ) := Ind GL3,4

GL3,4(3;λ,µ)τ(ξ3;λ,µ) induced from the uni-
tary irreducible representation τ(ξ3;λ,µ) of GL3,4(3; λ, µ). Here τ(ξ3;λ,µ) is of
the form

τ(ξ3;λ,µ)
((

1 0
a g

)
, (αij)

)
= e2πi(α11+λα21+µα41) · π(ξ3;λ,µ)

((
1 0
a g

))
,

where π(ξ3;λ,µ) is the irreducible unitary representation of R2 nGL2.
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(g) The representation ρ(ξ4;λ,µ) := Ind GL3,4

GL3,4(4;λ,µ)τ(ξ4;λ,µ) induced from the uni-
tary irreducible representation τ(ξ4;λ,µ) of GL3,4(4; λ, µ). Here τ(ξ4;λ,µ) is of
the form

τ(ξ4;λ,µ)
((

1 0
a g

)
, (αij)

)
= e2πi(α11+λα21+µα31) · π(ξ1;λ,µ)

((
1 0
a g

))
,

where π(ξ1;λ,µ) is the irreducible unitary representation of R2 nGL2.

(h) The representation ρ(ξλ,µ,κ) := Ind GL3,4

GL3,4(λ,µ,κ)τ(ξλ,µ,κ) induced from the uni-
tary irreducible representation τ(ξλ,µ,κ) of GL3,4(λ, µ, κ). Here τ(ξλ,µ,κ) is of
the form

τ(ξλ,µ,κ)
((

1 0
a g

)
, (αij)

)
= e2πi(α11+λα21+µα31+κα41) ·π(ξλ,µ,κ)

((
1 0
a g

))
,

where π(ξλ,µ,κ) is the irreducible unitary representation of R2 nGL2.

(i) The representation ρ(ξ12;λ,µ,δ) := Ind GL3,4

GL3,4(12;λ,µ,κ,δ)τ(ξ12;λ,µ,κ,δ) induced
from the unitary irreducible representation τ(ξ12;λ,µ,κ,δ) of GL3,4(12; λ, µ, κ, δ).
Here τ(ξ12;λ,µ,κ,δ) is of the form

τ(ξ12;λ,µ,κ,µ)
((

1 0
a g

)
, (αij)

)

= e2πi(α11+α22+λα31+µα32+κα41+δα42) · π(ξ12;λ,µ,κ,δ)
((

1 0
a g

))
,

where π(ξ12;λ,µ,κ,δ) is the irreducible unitary representation of R2 nGL2.

(j) The representation ρ(ξ13;λ,µ,δ) := Ind GL3,4

GL3,4(13;λ,µ,κ,δ)τ(ξ13;λ,µ,κ,δ) induced
from the unitary irreducible representation τ(ξ13;λ,µ,κ,δ) of GL3,4(13; λ, µ, κ, δ).
Here τ(ξ13;λ,µ,κ,δ) is of the form

τ(ξ13;λ,µ,κ,µ)
((

1 0
a g

)
, (αij)

)

= e2πi(α11+α32+λα21+µα22+κα41+δα42) · π(ξ13;λ,µ,κ,δ)
((

1 0
a g

))
,

where π(ξ13;λ,µ,κ,δ) is the irreducible unitary representation of R2 nGL2.

(k) The representation ρ(ξ14;λ,µ,δ) := Ind GL3,4

GL3,4(14;λ,µ)τ(ξ14;λ,µ,κ,δ) induced from
the unitary irreducible representation τ(ξ14;λ,µ,κ,δ) of GL3,4(14; λ, µ, κ, δ).
Here τ(ξ14;λ,µ,κ,δ) is of the form

τ(ξ14;λ,µ,κ,µ)
((

1 0
a g

)
, (αij)

)

= e2πi(α11+α42+λα21+µα22+κα31+δα32) · π(ξ14;λ,µ,κ,δ)
((

1 0
a g

))
,
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where π(ξ14;λ,µ,κ,δ) is the irreducible unitary representation of R2 nGL2.

(l) The representation ρ(ξ23;λ,µ,δ) := Ind GL3,4

GL3,4(23;λ,µ)τ(ξ23;λ,µ,κ,δ) induced from
the unitary irreducible representation τ(ξ23;λ,µ,κ,δ) of GL3,4(23; λ, µ, κ, δ).
Here τ(ξ23;λ,µ,κ,δ) is of the form

τ(ξ23;λ,µ,κ,µ)
((

1 0
a g

)
, (αij)

)

= e2πi(α21+α32+λα11+µα12+κα41+δα42) · π(ξ23;λ,µ,κ,δ)
((

1 0
a g

))
,

where π(ξ23;λ,µ,κ,δ) is the irreducible unitary representation of R2 nGL2.

(m) The representation ρ(ξ24;λ,µ,δ) := Ind GL3,4

GL3,4(24;λ,µ)τ(ξ24;λ,µ,κ,δ) induced from
the unitary irreducible representation τ(ξ24;λ,µ,κ,δ) of GL3,4(24; λ, µ, κ, δ).
Here τ(ξ24;λ,µ,κ,δ) is of the form

τ(ξ24;λ,µ,κ,µ)
((

1 0
a g

)
, (αij)

)

= e2πi(α21+α42+λα11+µα12+κα31+δα32) · π(ξ14;λ,µ,κ,δ)
((

1 0
a g

))
,

where π(ξ14;λ,µ,κ,δ) is the irreducible unitary representation of R2 nGL2.

Remark 3.20. The other cases n ≥ 4 are more complicated than the previous
cases n = 2, 3 but can be dealt with in a similar way.

We note that GLn,m acts on R(m,n) on the right transitively by

x · (g, a) := x tg−1 + a, x, a ∈ R(m,n), g ∈ GL(n,R).

For λ ∈ C, we define the representation πλ of GLn,m on L2(R(m,n)) by

(3.9) (πλ((g, a))f) (x) := |det g|−λf(x · (g, a)),

where (g, a) ∈ GLn,m, f ∈ L2(R(m,n)). Then πλ is unitary if and only if λ ∈ 1
2 + iR.

In fact,

‖πλ((g, a))f‖2L2(R(m,n)) =
∫

R(m,n)
|det g|−λf(x tg−1 + a)|det g|−λ f(x tg−1 + a)dx

=
∫

R(m,n)
|det g|1−2Re λ|f(x)|2dx

= |det g|1−2Re λ‖f‖2L2(R(m,n)).

We recall the following fact.
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Theorem 3.21. Suppose H is a subgroup of GLn and let Hm,n := HnR(m,n). Then(
πλ|Hm,n

, L2(R(m,n))
)

is irreducible if and only if the action of Hm,n on R(m,n) is
ergodic.

According to the above theorem, if λ ∈ 1
2 + iR, then πλ is irreducible because

GLn,m acts on R(m,n) ergodically.
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