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ABSTRACT. In this paper, we study unitary representations of the group GL(n,R) xR

1. Introduction

This paper is a continuation of “Harmonic Analysis on P,, x R 17 The aim
of this paper is to study the unitary representations of the group G L(n,R) x R("m)
in detail.

The motivation for studying the group GL(n,R) x R("™™ can be explained as
follows. We consider the Heisenberg group

HD({L’m) = { k)| A p e RMM g e ROW™ g 4 P\ symmetric }
endowed with the following multiplication law
Mpir)o (N s 6) = A+ XN, p+p/ s+ 6 + X0 — ™).
We define the semidirect product of Sp(n,R) and Hﬂ({“m)
SPum = Sp(n,R) x HY"™
endowed with the following multiplication law

(M, (A, i 1)) - (M, (X 5 6))
= (MM',(A+ XN, i+ 6+ 6+ X0 = 3tN)),

where M, M’ € Sp(n,R) and (X, i) = (A, u)M'. Tt is easy to see that the Jacobi
group Sp, m acts on the homogeneous space H,, x Cmm) transitively by

(L.1) (M, (X, w3 8)) - (Z,W) = (M(Z),(W + AZ + p)(CZ + D)1,
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where M = (é g) € Sp(n,R), (\, k) € H™ and (Z,W) € H,, x Cmm),
We let
GLpm = GL(n,R) x R™™

be the semidirect product of GL(n,R) and the commutative additive group R(™m)
equipped with the following multiplication law

(1.2) (g,a) - (h,b) = (gh,a'h™' +b),

where g, h € GL(n,R) and a,b € R™™. Then the action (1.1) of Sp,., on
H,, x C™m") gives a canonical action of GL,, », on the nonsymmetric homogeneous
space P, x RU™™) given by

(1.3) (g,0) - (V,V) = (gV'g, (V +a)"g),

where g € GL(n,R), a € R™™ Y € P, and V € R"™™) . In [15], we developed
the theory of automorphic forms on GL(n,R) x R(™™) generalizing automorphic
forms on GL(n,R).

This paper is organized as follows. In Section 2, we survey the unitary rep-
resentations of the general linear group GL(n,R). The unitary dual of GL(n,R)
was completely determined by E. Stein [10], B. Speh [6]-[8], D. Vogan [14] and
other people. We also review certain principal series of GL(n,R) investigated by
R. Howe and S. T. Lee [2]. In Section 3, we study the unitary representations of
GL(n,R) x RO™m) - Using the Mackey’s method, we compute the unitary dual of
GL(n,R) x R(™™ explicitly in the cases of n = 2,3, m arbitrary. We also deal with
certain unitary representations of GL(n,R) x R("™") (cf. (3.8)) and discuss their ir-
reducibility.

Notations. We denote by Z, R and C the ring of integers, the field of real num-
bers, and the field of complex numbers respectively. R* denotes the multiplicative
group consisting of nonzero real numbers. The symbol C;* denotes the multiplica-
tive group consisting of all complex numbers z with |z] = 1. The symbol “="
means that the expression on the right hand side is the definition of that on the
left. We denote by Z* the set of all positive integers. We denote by F*-!) the set
of all k x [ matrices with entries in a commutative ring F. For any M € F*:0 t\f
denotes the transpose matrix of M. For a Lie group G, we denote by G the unitary
dual of G.

2. A survey on the unitary dual of GL(n,R)

In this section, we survey the unitary dual of GL(n,R). The references are
[12]-[14], [5] and [6]-[8].
First we define the Stein’s complimentary series (cf. [10]). Assume n = 2m with

m a positive integer. We write

P=LN = {(’3 g) ‘ A,D e GL(m,R), B € R“”»””},
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where

Lz{(é;D‘ADGGMmﬁD}%GMmJQXGMmR)

_ I, B (m,m) | ~ @(m,m)
N{(O h)’BeR }_R .

Then P is a maximal parabolic subgroup of GL(2m,R) and N is the unipotent
radical of P.

Let 0, : GL(m,R) — R be the modular function. That is, d,,(g) = detg
for g € GL(m,R). We fiz a one-dimensional unitary character j of GL(m,R) and
a complex number t. We let ¢o,,,(j,t) : P — C* be the (generally non-unitary)
character of P defined by

¢2m(j7 t)((gvh)an) = ](gh) : [5m(gh71)]t7

where g, h € GL(m,R) and n € N. We put

and

(2.1) Tom (G, t) = Ind S5 gy (5, 1),

According to Stein [10], we see that oo, (J,t) is unitary and irreducible for ¢ € iR,

and that o2,,(j, t) is irreducible for [t| < 1. We call the representations oo, (j, ) for

0<t< % the Stein complimentary series of GL(2m,R).

We observe that the characters of GL(m,R) may be identified in a natural way
with the characters of GL(1,R), and hence j extends to a character of GL(2m, R).

Now we fix a unitary character
(2.2) j1: R* — C*.
This corresponds naturally to a family of characters
(2.3) Jm : GL(m,R) — C*
characterized by the property that for m < m/,
Jm'laL(m,R) = Jm-

We refer to the collection {j,,} loosely as j. We recall that a representation o of
GL(m,R) is called spherical if the trivial representation of O(m) is contained in the
restriction of o to O(m).

Definition 2.1. Let j be a family of characters as in (2.3). Define one-dimensional
representations i, of O(m) by

(24) Hm = jm|O(m)-
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Write p for the collection { i, }. We call u,, a special one dimensional representation
of O(m). A representation o of GL(m,R) is called almost spherical of type pi, if
m occurs in the restriction of o to O(m), in other words, if j.' ® o is spherical.

Definition 2.2. An (ordered) partition of a positive integer n is a sequence

T
= (ni,no,---,n.), n; €L, Zni =n.
i=1
We define
GL(r) GL(n1,R) X --- x GL(n,,R) C GL(n,R),

O(m) = O(n1) x---xO(n,) =0(n)NGL(n).

We let P(m) be the parabolic subgroup of GL(n,R) generated by GL(7) and the
Borel subgroup B of GL(n,R) consisting of upper triangular matrices. We let N ()
the unipotent radical of P(m).

We fix y = {um} as in Definition 2.1. The data are a partition 7 = (n;) of n,
and a collection

—

T=(r), 7 € GL(n;,R),
such that
(a) 7 is almost spherical of type py,, and
(b) 7; is either a unitary character or a Stein complimentary series.

We call the following induced representation

o (T) = Indg(ﬁf;’m ® T

a basic almost spherical representation of type p.
Theorem 2.3.

(1) ox(7) and o (7") are equivalent if and only if (=',7') is a permutation of
(m, 7).

(2) The basic almost spherical representations are unitary.

(3) The basic almost spherical representations are irreducible.

(4) Any irreducible unitary almost spherical representation of GL(n,R) is basic.
The outline of proof can be found in [14], p. 455.

Definition 2.4. Let G be a real Lie group with Lie algebra g. Let K be a compact
subgroup of G. Let V' be a g-module that is also a module for K. We say that V
is a (g, K)-module if the following conditions (1)-(3) are satisfied:
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(1) The action of g on V is compatible with that of K on V. That means that
k-X-v=Adk)X -k-vforveV, ke K, X €g.

(2) If v € V, then Kv spans a finite dimensional vector space W, of V such that
the action of K on W, is continuous.

(3) If Y €t and if v € V, then & Oexp(tY)v =Y.
t=

A (g, K)-module is said to be finitely generated if it is finitely generated as a U(g)-
module. V is said to be irreducible if V' and 0 are the only g and K-invariant
subspaces of V.

Definition 2.5. Suppose G is a reductive Lie group with K a maximal compact
subgroup of G. Let b be a Borel subalgebra of ¢, and T the corresponding Cartan
subgroup. Write 2p. for the sum of the roots of t in b. Fix an irreducible represen-
tation p of K of highest weight ~ in T. Let Yo € t* be a weight of v. We define the
norm ] of 1 by

(2.5) lull = {4+ 2pc, 1+ 2pc).
If X is any (g, K)-module, we say that p is a lowest K-type of X if
(a) w occurs in the restriction of X to K; and
(b) |||l is minimal subject to (a).
Theorem 2.6. Let X be an irreducible (g, K)-module for G = GL(n,R). Then X
has a unique lowest K-type. It occurs with multiplicity one in X.

Remark 2.7. Representations of general reductive groups may have several lowest
K-types. For more detail, we refer to [12].

For a positive integer n, we let m = [n/2] and € = n — 2m. Then n = 2m + e.
We set
To = S0(2) x --- x SO(2) (m copies).

Embedding Ty in O(n) and identifying SO(2) with the circle, we obtain
To = 7™,
The Cartan subgroup T of O(n) is given by
T=Tyx{E,, m.},

where E,, denotes the identity matrix of degree n and r,, = diag(1,---,1,—1) is the
diagonal matrix of degree n.

Proposition 2.8. The irreducible representations of O(n) are parametrized by pairs
(v,m), subject to the following conditions.
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(a) v is a decreasing sequence of m non-negative integers, in other words, a weight
Of TO .

(b) Ifn is even and 7y, is not zero, then n is %; otherwise n =0 or 1.

Let p be the irreducible representation of O(n) of highest weight (v,n). If n =0 or
1, the restriction of p to SO(n) is the irreducible representation of highest weight .
Ifn= %, the restriction of 1 to SO(n) is the sum of the irreducible representations

of highest weight v = (y1,-+ , Ym—1,Ym) and (Y1, , Ym—1; —Ym)-

Let p be an irreducible representation of O(n) of highest weight (v,n) as in
Proposition 2.8. Let p be the largest integer such that v, is at least 2. Define

(2'6) A(N):('Ylfly"'a’Yp*lvO""vO)'

Let m = (p1,- -+ ,pr) be the coarsest ordered partition of p such that «y is constant
on the parts of 7. Then the centralizer Lg := Lg(u) of A(p) in GL(n,R) is given by

(2.7) Ly = GL(m,C) x GL(n — 2p,R),
where .
GL(r,C) = [[ GL(p:, ©).
i=1
We let pi1, be the representation of Ly N K of highest weight

((71 - ]-7 Vo — 177p+1a"' 7’Ym)»77)

Let py be the representation of O(n — 2p) parametrized by ((Yp+1,--- ;¥m), 7). Let
~(4) denote the constant value of v on the j-th part of 7. Then we get

(2.8) I detw')*l} ® py.

We write ¢ = n — 2p. The last [n/2] — p terms of  are zeros and ones; say there are
q' ones. Define qy and ¢; as follows:

1

29) ifn=0or 2’ then ¢1 = ¢’ and g0 = ¢ — q1;
and

. 1 ,
(210) lfn:]_OI‘ 5, then qo = (¢ and Q1 =q—qo.
Let
(2.11) L = GL(r,C) x GL(qo,R) x GL(q1,R).
We define

(2.12) i = @2 det? ! @1 @ det.
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It is clear that pz, is an almost spherical representation of L N O(n).

Lemma 2.9. Suppose qo and q1 are non-negative integers, and ¢ = qo + q1. Write
q = 2r + e with r = [q/2]. Then there is a unique decreasing sequence vy of r ones
and zeros, and an n equal to 0, % or 1, with the following properties (1) and (2) :

(1) n is 3 if and only if q is even and 7, = 1;
(2) (2.9) and (2.10) hold, where ¢’ is the number of ones in 7.

Write puy = pys(qo,q1) for the irreducible representation of O(q) of highest weight
(v,m) with ¢ = qo + q1. Then py is the lowest O(q)-type of

O(q)
Ind O(qo)xO(q1)<1 ® det).

D. Vogan proved the following important theorem.

Theorem 2.10 (Vogan, [14]). Let G = GL(n,R) and K = O(n). Let (L,pr) be
the one defined by (2.11) and (2.12). Then L is a product of various GL(m;,R),
and pr is a special one dimensional representation of L N K (see Definition 2.1).
And there is a functor Q defining a bijection from the set of irreducible unitary
representations of L, almost spherical of type uy onto the set of irreducible uni-
tary representations of G of lowest K-type p. In particular, Q0 has the following
properties:

(a) If Y is a basic almost spherical representation of L of type ur, then QY is
unitary and irreducible.

(b) If X is any irreducible unitary representation of G of lowest K-type u, then
there is a unitary almost spherical representation Y of L such that X is a
subquotient of QY.

Now we describe the functor ) in a rough way. The main idea in the proof of
Theorem 2.10 is to reduce irreducible unitary representations to the case of spherical
representations. Together with Theorem 2.3, the above theorem parametrizes the
unitary dual of GL(n,R).

For brevity, we set G = GL(n,R) and K = O(n) for the time being. Fix an
element 4 on the unitary dual K of K. Define A := A(u) as in (2.6). Then A belongs
to a fixed Cartan subalgebra t of . We may find a #-stable parabolic subalgebra

qo = lg +ug
of g, where Ly is defined as in (2.7). uy is characterized by the properties:
A(ug, t) = {a € Ag, t)| (a,A) >0}

and
Allg, ) = fa € Ag, 9] (@, )) =0}
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We define a functor
Qo = L5((q0, Lo N K) 1 (9, K))

from (ly, Ly N K)-modules to (g, K)-modules. The definition of £ is explained in
Section 5 of [12]. We define a functor

(@) = (£5)*

from representations of Ly N K to representations of K.

Fix a real parabolic subgroup P of Ly with Levi factor L, where L is defined as
in (2.11). Let
P=LN

be the Levi decomposition of P. We define a functor
Qr =Ind (L T Lp)
from (I, L N K)-modules to (ly, Ly N K)-modules. We also define a functor
(QF)r =Ind((LN K) T (Lo N K))

from representations of L N K to representations of Ly N K.

We define a functor
(2.13) 0 =00k
from (I, L N K)-modules to (g, K)-modules. We set
Qf = (Q%)p 0 (Q%)r

a functor from representations of L N K to representations of K. The functor
) in (2.13) is nothing but the functor mentioned in Theorem 2.9. The complete

description of the unitary dual of GL(n,R) was given by V. Bargman [1] for n = 2,
B. Speh [7] for n = 3, 4 and D. Vogan [14] for the general case. For the case n = 2, we
pass from SL(2,R) to the group SL(2,R)* of matrices of determinant +1. Then we
pass from SL(2,R)* to GL(2,R) pasting on a character of a group R-Io C GL(2,R)
(cf. [1], [3]). For the general case, first we let B be the Borel subgroup of GL(n,R)
consisting of the upper triangular matrices with nonzero determinant. We let U be
the unipotent radical of B and T a split Cartan subgroup of B. Let

X = (X17X27"' 7Xn)

be a character of T', that is, a collection of n characters of R*. We extend x to a
character of B trivial on U. Then the induced representation

I(X) = IndgL(n’R)X
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has a unique irreducible quotient

(2.14) J(x) = 1(x)/1(x)o;

where I(x)o is the only maximal proper closed invariant subspace of I(x). It can be
shown that for a character y = (x1, X2, " , Xn) of T such that Re (s; —s;) € Z* for
all i, j with 1 <4 < j < n, the necessary and sufficient condition on the unitarity
of J(x) is that there exist a partition n = ny +na + -+ +n, (r € Z*) and unitary
characters n; of R* for i = 1,--- ,r such that

~ GL(n,R T
T(0) = nd PG ) @1y mi(detarn, v)-

Vogan [14] proved that the unitary dual of GL(n,R) consists of
UD1) unitarily induced representation;

UD2

(
( complimentary series;
(
(

)
UD3) the one-dimensional representations;
)

UD4) a family J(x) in (2.14) which are not induced from any parabolic subgroups
of GL(n,R).
Now we discuss certain principal series of GL(n,R). Let 7 = (ny,--- ,n,) be a

partition of n. We recall that P(r) is the parabolic subgroup of GL(n,R) generated
by GL(w) and the Borel subgroup B (cf. Definition 2.2). Obviously

(2.15) P(m) = {9 = (9ij)| 95 € M(ni,nj;R), gij =0(1<j<i<r)}.

Ifn=r,ie,ny =---=n, =1, then P(m) is called a minimal parabolic subgroup
of GL(n,R). If r = 2, that is, if ny + ny = n, then P(n) is said to be a mazimal
parabolic subgroup of GL(n,R).

For multi-indices € = (e1,--- ,€¢,) € (Z/2Z)" and v = (v, -+ ,v,) € C", we
define the character x., of P(m) by

T

(216) Xe,u(g) = H |det Gii

i=1

“i (sgn(det gii))“,

where g = (g;;) € P(m)(cf.(2.15)). It is known that for any € = (e1,--- ,€) €
(2/2Z)" and v = (11, ,v,) € (V—1R)", the induced representation

GL(n,R
(2.17) Te,u(ﬂ') = IndP(TE) )Xe,u

is an irreducible unitary representation of GL(n,R). If P(7) is a minimal parabolic
subgroup, 7, () in (2.17) is called a unitary principal series of GL(n,R). If r < n,
that is, if one of n;’s is larger than 1, 7, (7) in (2.17) is called a unitary degenerate
series of GL(n,R). If v € (v/=1R)", the principal series 7., (7) is not unitary in
general.
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For a positive integer k with 1 < k < [n/2], we let

P, = {<S Z) eGL(n,R)‘ a € GL(k,R), ¢ € GL(n - k,R), beM(n_M;R)}

be a maximal parabolic subgroup of GL(n,R). For a € C, we define the character

Xa : P — Chy
4 ((c b)) _ ) (deta)* ifdeta >0,
Xa \\0 a)) ™ \4|detal® if deta <o.
Howe and Lee [2] investigated the irreducibility and the unitarity of the following
degenerate series 73, o of GL(n,R) defined by

(2.18) T;fa = Indg:(n’R)Xi:.

The representation space T]?:a is the space consisting of functions f : GL(n,R) — C
satisfying the condition

flap) = XE®)] ' f(9). g€ GL(n,R), p€ P

GL(n,R) acts on the space Tki)a by left translation:
(9-H)(h)=Flg™'h), g,h€GLR), f e,
Howe and Lee [2] proved the irreducibility of T,jfa as follows:

(a) If a € Z, then T};t,a are irreducible.

b) If a is an even integer such that —n/2 < o < —2[(k + 1)/2], then 7" is
(b) g ) ka

irreducible. If o is an even integer such that o > 2 — 2[(k + 1)/2], then 7,1
is reducible.

(c) If o is an even integer such that —n/2 < o < —1 — 2[k/2], then 7, is
irreducible. If o is an even integer such that a > 2 — 2[k/2], then 7, is

reducible.

(d) If « is an odd integer such that —n/2 < a < —1 — 2[k/2], then T]:a is
irreducible. If « is an odd integer such that o > 1 — 2[k/2], then T,j:a is
reducible.

(e) If o is an odd integer such that —n/2 < a < =1 —2[(k +1)/2], then 7, is
irreducible. If o is an odd integer such that o > 3 —2[(k +1)/2], then 7, is
reducible.
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For the unitarity of T;ta, we refer to [2], pp. 306-308. We realize the degenerate

series T]jfa in another way. We consider the following action o of GL(n,R) on R(™F)

defined by
(2.19) o(g)(x) == tg~ 'z, geGL(n,R), z € R™H.

We let M(n,k;R)? be the set of all n x k real matrices of rank k. For a € C,
we let Eia be the space consisting of functions f : M (n, k;R)? — C satisfying the
following condition

_J(deta)*f(z) if deta >0,
J(wa) = {:I:|det al”f(z) if deta <0

for + € M(n,k;R)? and a € GL(k,R). Then the action o in (2.19) induces the
representation O‘;;a of GL(n,R) on Eia defined by
(oFa(9)f) (@) = flolg @) = f('g2), g€ GL(n,R), © € M(n,k;R)",

4+ .. . +
Then we can show that Thoo 18 isomorphic to Tkar

3. Unitary representations of GL(n,R) x R(™")

In this section, we find the unitary dual of GL(n, R) x R("™™ using the Mackey’s
method and deal with certain unitary representations of GL(n,R) x R(™™).,

For brevity, we put
A:=R™"  GL, = GL(n,R) and GL, ,, = GL(n,R) x R"™™.
The multiplication on GLy, ;, is given by
(3.1) (g,a) - (h,b) = (gh, a’h™" +b), (g,a), (h,b) € GLy m.

We may identify A with the subgroup {(I,,,a)| a € A} of GL,, ,. It is clear that A
is a commutative normal subgroup of GL,, ,,, and the center of GL,, ,, consists only
of the identity element (I,,,0). Moreover we have the split exact sequence

0—A—GL,,,, —GL, — 1.

We see that the unitary dual A of A is isomorphic to A. Indeed, the unitary
character py of A corresponding to A € A is defined by

(3.2) pa(a) == e2mio(Aa) g e A

For the time being, we write g, = (g9,a) € GLyy for g € GL,, and a € A,
and we identify an element g of GL,, with an element (g,0) in GL,, ,,,. The group
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GL, m acts on A by conjugation because A is a normal subgroup of GL,, ,,. This
induces the action of GL,, ,,, on A as follows:

(3-3) GLn,m x A —s Aa (gﬂa ,0) = pde,
where g, € GL,, , p € A and the unitary character p9+ of A is defined by

Pg. (b) := p(gs 'bga), b€ A

Since
9a 'bga = (9,0) (g, a) = (In,b'g™") = g "bg
for any g € GL,, and a,b € A, we obtain

(3.4) po(b) = p?(b) = p(b'g™").
In particular, p® = p for every element a € A.

Lemma 3.1. The action of an element g, = (g,a) on an element py of A (cf. (3.2))
is given by

(3.5) P = p3 = pag-1, A EA

Proof. If b € A, then

p3e(b) = pS(b) = palblg™h)
62m‘a(*,\b‘g—1)

6271'1'0'( tag~hb)

= prg-1(b) (according to (3.2)).
Ifpe A, we denote by Q, the GL,, p,-orbit of p and let

Ganm(p) = {ga S GL'IL,m| pga = p}

be the stabilizer or isotrophy subgroup of GL, ,, at p. Then the mapping defined
by
GLn,m/GLn,m(p) — Qpa Ga * GLn,m(p) - pga

is a homeomorphism, in other words, A is regularly embedded. Obviously A is
a subgroup of GLy m(p). We define the subset GL,, m(p), of the unitary dual
GLnm(p) of GLynm(p) by

GL/n,m\(p)* = {T € GL/mm\(p) | 7|4 is a multiple of p} .

According to G. Mackey [4], we obtain the following.
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L —

Theorem 3.2. For any 7 € GLy n(p),, the induced representation

GLn,m

Ind G

is an irreducible unitary representation of GLy, . And the unitary dual GLy, m(p)
of GLy m is given by

~N1 GLn,m 77
GL,m = U {Ind GLomT|T € GLn77n(p)*}.
[p]eGLn,nl\A

We deal with the special cases n = 3, 4 explicitly. The other cases n > 4 may
be dealt with similarly.

Case I. n = 2.
(I-1) m=1.

In this case, A = R(1:2) =~ R2. We identify the unitary dual A of A with R2.
From (3.5), we see that G Lo j-orbits in A consists of two orbits g, €; given by

Q10 = {(0,0)}, Qi = R? — {(0,0)}.

We observe that €31],0 is the GLy j-orbit of (0,0) and Q9,1 is a GLg 1-orbit of
any element (A, u) # (0,0).

Now we choose the element § = p(; o) of A. That is, §(x,y) = 2™ for x,y € R
It is easily checked that the stabilizer of p( gy is GL2,1 and the stabilizer G Lz 1(d)
of 4 is given by

GLo(8) = {(C 2) a) eGLm]ceR, d e R, aeR(m)}.

According to Theorem 3.2, we obtain
Theorem 3.3. Let n =2 and m = 1. Then the irreducible unitary representations
of GLa,1 are the following:

(a) The irreducible unitary representation m, where the restriction of m to A is
trivial and the restriction of m to G Loy is an irreducible unitary representation
Of GL2 .

(b) The representation
mx = Ind gézji(é)m (AeR)

induced from the irreducible unitary representation Tx of GLa1(6) such that
Tx|a is a multiple of 4.
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(I-2) m = 2.

In this case, A~ R22 . From now on, we identify A with R22).
Lemma 3.4. Let n = 2 and m = 2. Then the GLy3-orbits in A consist of the
following orbits

)
)
N
i)

I

—N
N
o O
S O
N———
——

)
™
»
=

I

Quaoya(8) = (ﬁ) € R(M)’ AeRM? A+ 0} (6 € RX)
and
Q[QQ]§4 = GL(27R)
Quajo is the GLys-orbit of 0:(8 8) Quajy is the GLys-orbit of (8‘) with 0 #

0
g

the G Ly 2-orbit of (5;) with 0 # « € R12) gnd Q22),4 s the GLa2-orbit of any
invertible matriv M € GL(2,R).

Proof. Without difficulty we may prove the above lemma. We note that Q52],3(01) =
Q22);3(d2) if and only if §; = d2. So we leave the detail to the reader. O

6—<(1) 8) and f-(? 8)

ObViOllSly e € Q[QQ];]_ and f (S Q[QQ];Q.

a e RG2), Qpao);2 s the GLyo-orbit of ( > with 0 # § € RML2), Qp22);3(9) is

We put

Then we may prove the following lemma.
Lemma 3.5.

(a) The stabilizer of 0 is GLg 5.
(b) The stabilizer GL22(e) of e is given by

GLas(e) = {((i 2) ’ 0‘)

For each x € Qgg),1, the stabilizer GLao(x) of x is conjugate to GLao(e).
Precisely if v = ego with go € GL(2,R), then GLy »(z) = (go,0)"*GL2,2(€)(go, 0).

ceR, deRX, aER(m)}.
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(¢) The stabilizer GLao(f) of f is given by
10 x (2,2)
GLyao(f) = e d) @ ’cGR,dER,aeR’ )

For each y € Q29).2, the stabilizer GLz 2(y) of y is conjugate to GLaa(f).

10
0 0

cio={((2 ) |vem e ocnes)

For each z € Qp29):3(6), the stabilizer GL22(2) of z is conjugate to G Lz 2(6).
(e) The stabilizer GLa 2(M) of M € Qa4 is given by

(d) The stabilizer GL32(5) of ( ) (6 € R*) is given by

GLop(M) = { (Ir,0)| a € RED} = RE2),

Therefore A is reqularly embedded.

For A € R, we let x\ be the unitary character of R defined by xx(a) :=
e?™2e (g € R) and for M € RZ2) | we let 7pr be the unitary character of
A =R®2) defined by

(3.6) Tm(X) = M MX) X e A

According to Theorem 3.2, we obtain the following
Theorem 3.6. Let n =2 and m = 2. Then the irreducible unitary representations
of GLa o are the following:

(a) The irreducible unitary representations m, where the restriction of m to A is
trivial and the restriction of m to GL(2,R) is an irreducible unitary represen-
tation of GL(2,R).

b) The representations mwy., := Ind Gla,a Tre (A € R) induced from the irre-
’ GL2 2(6) ’

ducible unitary representation Tx . of GLoo(e) whose restriction to A is a
multiple of 7. (¢f. (3.6)). In fact, Tx . of the form

()2 2)) = ()

where ¢, ay, -+, ag ER, d € R*.

(c) The representations .y = Ind giz‘z(f)%\’f (A € R) induced from the irre-
ducible unitary representation 0y ¢ of GLao(f) whose restriction to A is a
multiple of T¢ (cf. (3.6)). Indeed, 6 ¢ is of the form

() ) bt ()

where ¢, ay, -+, ag €ER, deR*.
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d) The representations my.s := Ind GlLz,2 Ors(AeER, € RX, reR) induced
; GLs o ,

L,2(9)
from the irreducible unitary representation ox s of GLa 2(0). Indeed, o5 is
of the form
10 ar Qo _ omi(aytass) ( RxRX ) 10
(0 ) (0 0)) = (mai=n) (L 3):
where ¢, a1, -+, ag € R, deR*.

(e) The representations mp; = Ind ng’zTM (M € GL(2,R)) of GLa32 induced

from the unitary character Ty of A defined by Ty (X) = e2™0MX) " X € A,

Proof. We leave the detail of the proof to the reader. O

(I-3) m > 2.
This case is more complicated than the above cases. Here we consider only the
case m = 3. The other case m > 4 may be dealt similarly.

Lemma 3.7. Let n =2 and m = 3. That is, A = RG2) . Then the G Ly 3-orbits in
A are given by

00
Qo = 0 0f,,
00
A
Qg1 = 0| eRGP| AcROD A£0 ),
0
0
Qg2 = Al eRCY| AeRED A£0 3,
0
0
Qs = 0] eRCD| AcRED A£0 3,
A
0
Qg (1;0) = A eRGD I AcRED A+£0 (6 € RX),
§A
A
Qg (2:0) = 0| eRGD|AcRED A+£0 (6 € RX),
§A
A
Qg (3;6) = SA| eRGD I AcRED A£075 (5 €RY),




Harmonic Analysis on Pn X R(m’n), II 319

Qg (A ) = AA ER”)‘AGR(”) A#0% (A peRY)
A
and
A
QoA p) = B e RG? e GL, (A, €R),
A+ uB
A
Qis(\, ) = M+ uB | e RG2) € GL, (\p€R),
B
A+ B
Qos(\, p) = A e RG? < ) € GL, (A, €R).
3 B

Proof. Tt is easy to prove the above lemma. We leave the proof to the reader. [

10 0 0 0 0
€1 = 0 0 y €y = 1 0 s €3 = 0 0
0 0 0 0 10

and for each §, A\, u € R*

We put

0 0 1 0 1 0
f1,§ = 10 ) f2,6 = 0 0 ’ f3,5 - 0 0 )
6 0 o 0 0 0
1 0
Hp=12 0
w0

We also set for each (A, p) € R?,

hia(A, p) = (

A

hos(\, ) =1 0
0 1

1,

hy

> O =
= = O
~_
>

flon

w

>

=

I
o
O > =
T O
N~ —

and

We note that 0€ Q0. € € Qg (i =
17273)a f)\,u S 9[23]()‘7,“) th()‘ M) € 912( /j/
Qgg(A, /.L)

Then we may prove the following lemma without difficulty.

2,3), fis € Qpy(i;0)(G =
3(A, 1) € Qug(A, ), has(A p) €

Lemma 3.8.
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The stabilizer of 0 is GLg 3.
Let GLo 3(7) be the stabilizer of e; (i = 1,2,3). Then

GL273(i):{<<i 2) a) | ceR, deR, aeR(3’Q)}, i=1,2,3

For 6 € R*, we let GL23(i;0) be the stabilizer of f; s (i =1,2,3). Then

GL2’3(¢,5):{(C 2), a> | ceR, deR”, aeR(3’2)}, i=1,2,3.

For any A, p € R*, we let GLy3(\, 1) be the stabilizer of fx,. Then
GLas(h ) = {((i 2) , a) | ceR, deR¥, a € RG? } (A, p € RX).

For any A\, pn € R*, we let GLa5(12; A\, ), GL23(13; A, 1), GLo 3(23; A\, ) be

the stabilizers of hia(\, 1), his(A, 1), has(\, p) respectively. Then

GLa3(12; M, ) = GLa3(13; A, 1) = GL23(23; A\, 1) = {(Ig,a) | o e RG?) }

Therefore we see easily that A is reqularly embedded.

According to Theorem 3.2, we obtain the following.

Theorem 3.9. Let n =2 and m = 3. Then the irreducible unitary representations
of GLy 3 are the following:

(a)

(b)

The irreducible unitary representations m, where the restriction of w to A is
trivial and the restriction of m to GL(2,R) is an irreducible unitary represen-
tation of GL(2,R).

The representations mq y := Ind géz’z(l)ﬁ)\ (X € R) induced from the unitary
representation 71 x of GL23(1) defined by

a1 Q2
10 ) x 1 0
T1,\ <C d) ) 33 34 = 62 I (IDd%XR X)\) ((C d)> )
5 6

where ¢,ay,- - a5 € R and d € R*.

The representations o y := Ind 222’2(2)7'2)\ (X € R) induced from the unitary
representation 1o\ of GLa 3(2) defined by

Qa1 Qg
1 O Tio X 1 0
T2\ (C d) , 33 34 = 2mias (Ind%xR X)\> ((C d)) R
5 6

where ¢, a1, a5 € R and d € R*.
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The representations s » := Ind 522’2(3)7’37)\ (X € R) induced from the unitary
representation T3 x of GLa 3(3) defined by

a1 Q9
Lo mia RXR* 10
T3, (C d) R a3 Oy = 62 5. (Inde X)\> ((C d)) s
a5 Qg
where ¢,aq,--+ ;a5 € R and d € R*.

The representations (1 5),x = Ind g§2’2(1_5)7(175)7>\ (6 € R*, X € R) induced
from the unitary representation 1(1 5 of GL23(1;0) defined by

a1 Qg
10 (o as x 10
s ( d) s ar| ] ) = emitersen. (maze ) ( ( d)) |
a5 Qg
where ¢, a1, ,a6 € R and d € R*.

The representations Tz 5),x = Ind 222'2(2,5)7'(275)7,\ (6 € R*, XA € R) induced
from the unitary representation 7(3 5 of GL23(2;6) defined by

a1 Q9
10 mi(a [l x 10
T(2,6),A (C d)’ a3 Oy :62 (146 5),<Ind§>ﬂR X)\) ((C d>>7
a5 Qg
where ¢,aq,--+ ;a5 € R and d € R*.

The representations (s sy x = Ind g§2’2(3_5)7(375)7>\ (6 € R*, XA € R) induced
from the unitary representation 7(35) x of GL23(3;0) defined by

a1 Q9
10 (o [ x 10
T(3,5),0 (C d) as ag — 2rilan+s ”-(Ind%NR X)\> ((C d)) 7

a5 Qg
where ¢, a1, ,a6 € R and d € R*.
The representations my,x ) = Ind gézji()\#)T(A’M)’r (r € R, \,u € RX) in-

duced from the unitary representation 7y ). of GLa3(\, ) defined by

a1 Q9
1 0 ; x 1 0
T pm),r (C d) s |as aa = €2m(al+m3+’m5)'(1nd§w X)\) ((C d)) ;

a5 Qg

where ¢,aq, -+ a5 € R and d € R*.
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(i) The representations (125, = Ind 22222(12;&#)7—(12;)\#) (M p € R) induced

from the unitary representation T(12;5 ) of GL23(12; A, 1) defined by

a1 Q9
T(12:0,00) I, a3 au — eQTI’Z(CEl"F)\CKS"F(CM}"‘HOCG))’ at, -+ ,0g € R.
a5 0%
(j) The representations ms; ) = Ind 222’2(134/\ ) T35 ,0) (A p € R) induced

from the unitary representation T(13;x,,) of GL23(13;\, 1) defined by

a1 Q2
T30 L, |as as _ e27rz(a1+>\a3+(as+#a4))’ Qay, -, 06 € R.
a5 Qg
) GLa, )
(k) The representations ma3;,,) = Ind GL:E(QB;AMT(%;)\M) (A p € R) induced

from the unitary representation T(as;5 ) of GL23(23; A, 1) defined by

a1 Q9 ]
T(23;A,0) Iy, |az3 g = e2rilastrartlastua)) ) .. ag € R.
a5 Qg
Proof. We leave the detail of the proof to the reader. O
Case II. n = 3.
(ITI-1) m = 1.

In this case, A = R(1:3) = R3. We identify the unitary dual A of A with R3.
According to (3.5), we see that G L3 1-orbits in A consists of two orbits Q313505 Q31551
given by

Qo = {(0,0,0)}, ©; =R*—{(0,0,0)}.

We note that Qg is the GL3 1-orbit of (0,0,0) and €4 is a GL3 1-orbit of any element
different from (0,0,0). We put e = (1,0,0). Then the stabilizer GL31(e) of e is
given by

GL31(e) = {((1 2) ,a) € GL3, | aeR®Y geGLy, ac R(1’3)} )

a

According to Theorem 3.2, we obtain the following.
Theorem 3.10. Let n = 3 and m = 1. Then the irreducible unitary representations
of GL3 1 are the following:

(a) The irreducible unitary representation w, where the restriction of m to A is
trivial and the restriction of m to GL3 is an irreducible unitary representation
Of GL3 .



Harmonic Analysis on Pn X R(m’n), II 323

(b) The representation m, := Indgiz’i(c)ay induced from the unitary representa-

tion o, of GL31(e) defined by

1 0 Tion Ny 0 1 0
a ((a g) ,(061,0[27063)> = 62 (Indﬁ;x L 91/) ((a g>> )

where 0, (v € R?) is the unitary character of R? defined by 0,(a) =
e2mil'va) (¢ R2). We note that GL31(e) is isomorphic to the group
R? x GLy & GLy;. We already dealt with the unitary representations of
GL2’1.

(I1-2) m = 2.
In this case, A = R(23) ~ 4

Lemma 3.11. Let n = 3 and m = 2. Then the GL3 >-orbits in A consist of the
following orbits:

000
e = {85 9))
QO A (2,3) (1,3)
s = (o) €R ‘AGR L A£0S,
Qe = {(ﬂ) S R<2’3>\ AeRMY, A 0} ,
A ,
Q[32];3(5) = {((5A) c R(2,3)’ Ac R(l,&)7 A+ 0} (5 e RX )

and
Qpsaga = {M e R®3) | rank M = 2} .

0 0 O

Qzo);0 @8 the GL32-orbit of 0—(0 0 0

>7 Qzg);1 08 the G L3 2-orbit of (g) with

0
s

the GL3 >-orbit of (50; with 0 # o € R3) and Q39p:4 18 the G L3 2-orbit of any

0# acRL3), Q3g);2 is the GL32-orbit of ( ) with 0 # 3 € RMW3), Q32);3(0) s

invertible matriz M € R?2-3) with rank M = 2.

Proof. Without difficulty we may prove the above lemma. We note that 2(39),5(51) =
Q32],3(01). So we leave the detail to the reader. O

. (1 00 . (000
e‘(ooo) 8Lndf_<100>'

Obviously e* € Q39,1 and f* € Q39;2-

We put
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Then we may prove the following lemma.

Lemma 3.12.
(a) The stabilizer of 0 is GLg 5.
(b) The stabilizer GL32(e*) of e is given by
(3.7) GLya(e*) = {((; 2) : a) ( a € RV, g€ GLy, a € R } .

For each x € Q3g).1, the stabilizer GL32(x) of x is conjugate to GL32(e*).
Precisely if v = e*go with go € GL3, then GL3 2(z) = (g0,0)"*GL3 2(€*)(go, 0).

(c) The stabilizer GL32(f*) of f* is given by (3.6).

1 00

(d) The stabilizer GL3 2(3) of (5 0 0

) (6 € R™) is given by (3.6).

(e) The stabilizer GL3 (M) of M € Q39,4 is given by
1 0 0
GL3 (M) = 01 0],allabeR, ceR*, acRZ?
a b c

Therefore A is reqularly embedded.

According to Theorem 3.2, we obtain the following.

Theorem 3.13. Letn = 3 and m = 2. Then the irreducible unitary representations
of GL3 > are the following:

(a) The irreducible unitary representations p, where the restriction of p to A is
trivial and the restriction of p to GLs3 is an irreducible unitary representation
Of GL3 .

(b) The representations pes = Indgﬁi’z(e*)re* induced from the irreducible uni-

tary representation T.- of GL3 2(e*). Here T.- is of the form

w(la) @i w) e (G 0)
a g ay a5 Qg a g
where  is an irreducible unitary representation of R2xGLy given by Theorem

3.3.

(c) The representations py+ = Indgii’z(f*)rf* induced from the irreducible uni-
tary representation Ty- of GL3o(f*). Here T4+ is of the form

]. 0 (651 (65 Q3 _ 27maa 1 0
Tr a g)' \as a5 ag - T\ \a g))’

where  is an irreducible unitary representation of R2xGLy given by Theorem
3.3.
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(d) The representations ps := Indgiz‘z(é)ﬂ; induced from the irreducible unitary
representation 75 of GLs 2(0) defined by

Ts <<1 0) 7 (041 Q2 a3>) _ 62ﬂa1+6a4 o ((1 0)) ,
a g ay a5 Qg a g
where T is an irreducible unitary representation of R?xGLy given by Theorem

3.8.
L3 2

(e) The representations pyy := IndgL3 o™ (M € RZ3) with rank M = 2) of
GLs o induced from the unitary character Tar of GL32(M) defined by

—_

100aaa
0(123

' 100
(X)) [ [0 ) = e¥rilatas) (o 1 0],
a b c 4 G5 Q6 a b c

where wyr is an irreducible unitary representation of R? x GL;.
Proof. We leave the detail of the proof to the reader. O
(I1-3) m = 3.
In this case, A = RG:3),

Lemma 3.14. Let n = 3 and m = 3. That is, A = RG3) . Then the GLs3 3-orbits
in A consist of the following orbits:

00 0
Qagpo = 8 8 8 ,
A
Qzia = 0| eRGI | AcRED A0},
0
0 B b
Quze = Al eRGI | AcRED A£0 3,
0
O q
Quaas = 0| eRGI | AcRED A0},
A

Qs (10 ewwWAewmxA¢o (6 € RX)

Qpzz(2:0 GMMWAGMWLA¢0 (6 € RX),

0
) = A
dA
A
) = 0
0A
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A
Qay(30) = {[64] ROV | AR, A#o} (6 € RX),
0
A
Qaay (A, p) = AA | eRGD ‘AERm) A#0 (A, peRX)
uA
and
A A
Q2.2 B e RG®3) | rank B = (A, €R),
A+ uB
A A
Quzap M+ pB | € R® | rank = (A, €R),
B B
A +uB A
QQS;A,H = A € R(B’S) rank = ()\7 RS R),
3 B
Qa3 = GLs.

Proof. 1t is easy to prove the above lemma. We leave the proof to the reader. [

We put

1 00 0 0 0 0 0 O

=0 0 0, 6,=11 0 0], 63=(0 0 O

0 0 O 0 0 0 100

and for each §, A\, p € R*
0 0 0 1 00 1 00
hs=11 0 0|, 6O5=[0 0 O, O35=[(d 0 0],

0 0 0 6 0 0 0 0 0

>
>
=
Il
>
oo

0
0].
w 0 0

We also set for each \, u € R*,

1 0 0 1 0 0 Aou 0
¢12;)\”U. =10 1 0 ) ¢13;)\,,u =|(A 0] and ¢23;)\,;¢ =11 0 0
A g0 01 0 01 0

We note that 0; € 9[34];1- (Z = 1,2,3)7 9j)5 S 9[33](_776) (] = 172,3), 0)\’“ S
Qs31( A 1), Pr2am € Qazgaus P13am € Qzinu G230, € Q23ia
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Then by a simple calculation, we may prove the following lemma without diffi-
culty.

Lemma 3.15.
(a) The stabilizer of 0 is GL3 3.
(b) The stabilizer GL3 3(1) of 01 is given by

B R —1

a g

(c) The stabilizer GL3 3(2) of 02 is given by

GL373(2) = ,a | € GL3,3 a € R(?;,S)

* O ¥
* = %
* O *

(d) The stabilizer GL3 3(3) of 03 is given by
T B Ipe—

(e) The stabilizer GL3 3(3;0) of 6;,5(i = 1,2,3) is given by

ST A TR —)

(f) The stabilizer GL3 3(A, ) of 8y, is given by

GL33(\p) = {((i 2) ) 04) ’ a¢c R(Q’l), g€ GLy, a€ RG-S } )

(g) The stabilizers GL3 3(12; A\, 1), GL3 3(13; A\, i), GL3 3(23; A, 1) of P12:3, 5 P13:7,15
®23;x, TESPEctively are given by

GL33(12;A, 1) = GL33(13; A, 1) = GL33(23; A, 1)

A
0
1 a,beR, c e RX, a e RG3
b

Il
QO

0
0 , € GL3’3
C

(h) The stabilizer of I5 is {(I3,0)] o € RG3)} >~ A,
According to Theorem 3.2, we obtain the following.

Theorem 3.16. Let n = 3 and m = 3. Then irreducible unitary representations of
GL3 3 are the following.
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(a)

(b)
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The irreducible unitary representations p, where the restriction of p to A is
trivial and the restriction of p to GLs is an irreducible unitary representation
Of GL3 .

The representation pg, := Ind géz’z(l)ml induced from the unitary represen-

tation 9, of GL3 3(1). Here 1y, is of the form

a1 a2 Q3
T, <1 0) y | X4 Q5 Qg = 627”011 * 7o, <(1 0>) )
a g a g
Q7 ag Qg
where g, is the irreducible unitary representation of R? x GLo given by The-

orem 8.3.

The representation pg, := Ind géi,i@)m? induced from the unitary represen-
tation Ty, of GL33(2). Here Ty, is of the form

911 G912 913 ap Q2 Qa3 ) 911 912 913
0, 0 1 0 |,{as a5 ag]| | =e* 5.y, 0 1 0
931 932 933 Q7 Qg Q9 931 932 933

where Ty, is the irreducible unitary representation of R? x G Ly given by The-
orem 3.3.

The representation pg, := Ind 522’2(3)793 induced from the unitary represen-
tation 19, of GL3 3(3). Here 1p, is of the form

a1 Q9 Q3
1 ; 1
Ty ( O) | s as = 2™ .y, <( 0)) ,
a g a g
ar Qg Qg
where Ty, is the irreducible unitary representation of R? x G Ly given by The-
orem 3.3.

The representation p1 s := Ind géz’i(l,é)Tl,g induced from the unitary repre-
sentation 7,5 of GL33(1,9). Here 11,5 is of the form

Q1 Q2 Q3
10 i a 10
T1,6 (a g> s las a5 ag = 62 (aa+dar) | 1,5 <<a g)) R

Q7 g Qg

where 15 is the irreducible unitary representation of R? x GLo given by
Theorem 3.3.

The representation pa s := Ind gii’ig,é)m,g induced from the unitary repre-

sentation 12,5 of GL33(2,0). Here 115 is of the form

a1 (65) (0%
10 » 10
2,6 (a g) Nas as ag | | = eFrilentoan) q, s ((a 9)) ’

Q7 g Qg
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where ma s is the irreducible unitary representation of R? x GLy given by
Theorem 3.3.

(g) The representation p3 s := Ind gﬁiz(S 5)TLS induced from the unitary repre-
sentation 71,5 of GL3 3(3,9). Here 135 is of the form

Qp Qg Q3
1 0 _ 2mi(ar1+day) 10
T35 (a g) s a5 ag =e LERN g) )

a7 g Qg

where 35 s the irreducible unitary representation of R? x GLy given by
Theorem 3.3.

(h) The representation py , = Ind giz:z(#)n# induced from the unitary repre-

sentation Tz, of GL33(\, ). Here T, is of the form

ap a2 Qg
10 _ 2mi(ar +Aag+par) 10
T p <Cl g> ) 34 a5 Qg =€ UpwWn a g )
7

ag Qg

where m,, is the irreducible unitary representation of R?* x GLy given by
Theorem 3.3.

. . L GL3,3 . .
(i) The representation pio.z,, = Ind GlLo 5 (120,00 T12:0,01 induced from the unitary

representation Tig;x,, of GL33(12; A, p). Here Tia;x,,, 15 of the form

1 0 O Q1 Q9 QO3
T12;0, 1 0 1 0 , |4 G5 Qg
a b c a7 ag Qg
1 0 0
eQTrz(a1+a5+)\a7+uag) T2 01 0 ,
a b c

where 2.5, is the irreducible unitary representation of R* x GLy given by
Theorem 3.3.

(j) The representation p13;,, = Ind giii(l&k 0 T13:A 0 induced from the unitary

representation Tig;x,, of GL33(13; A, 1). Here 1135, is of the form

Q7 g Qg

1 0 0 a1 Qg Qg
T13:M,u 0 1 0f,{as a5 aﬁ)
a b c
0
627ri(a1+ag+)\a4+ua5) 1
b

o O o

1
Tz | |0
(0%

where T35, 15 the irreducible unitary representation of R? x GL;.
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(k) The representation paz;» ., = Ind gﬁz’i(%}\ 0 T230 induced from the unitary

representation Togx . 0f GL3 3(23; A\, ). Here Toz,» ,, is of the form

1 0 0 Q1 Q2 Q3
T23:\, 1 0 1 0 , | g Q5 Qg
a b c a7 ag Qg

1 0 0
—  e2milaatastiaitpas) To3: 4 010 )
a b c

where ma3.) . 15 the irreducible unitary representation of R? x GL;.

(1) The representation py, := Indeg”3 X15 induced from the unitary character xr,
of A given by

Q1 Qg Qa3
XI3 Q4 Qp (675 = e
ar  ag Qg

2mi(a +as+ag)

(I1-4) m = 4.
In this case, A = R(4:3),

Lemma 3.17. Let n = 3 and m = 4. Then the GLs3 4-orbits in A consists of the
following orbits:

Q[34];0 = {0}7
A

Quga = { | 0| €OV AcROY a0},
0
0

Qpaje = é eRWI| AR, A+£05,
0
0

Qpas = 21 eRWI AcRID A£0}Y,
0
0

sapa = 8 eRUIN AeRMY, A0,
A




Q13;(5

Q14;5

Q23;5

Q24;6

Q34,5

Ql;&u

QQ./\

ey

QS;)\,;L

Q4;>\,u

QA,#,H
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P ) ooi;; oio;n ioo;n oi:Lo io;Lo g;hoo

= >
R

c R4

c R4

€ R4

e R4

e R4

c R(473)

c R(473)

c R4

e R4

e R4

e R4

AeRBD A+£0

AeROD A£0

AeROD A£0

AeROD A£0

AeRMD A£0

AeRED A£0

AeRI3) A+£0

AeRBD A+£0

AcREY A£0

AeROD A£0

AeROD A£0

(6 € R¥),

(6 € R™),

(0 eRY),

(0 eRY),

(0 eRY),

(0 eRY),

(A, e RY),

(A u € RY),

(A, peRY),

(A n € RY),

(A u, & € R)
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and for any A\, pu, K, 6 € R,

912;)\,;1,,&,6 -

914;)\,#,5,5 =

923;)\,#,;{,5 =

924;)\41,,/@5 =

Q34;>\>u,m5 =

Ql23;x\,u,ﬁ =

9124;)\,H,H -

9134;)\,;1,,& -

9234;)\,#,5 -

Jae-Hyun Yang

A+ uB
KA+ 0B

A+ uB
kA + 0B

A+ uB

kA+ 0B
A+ uB

kA + 0B

A+ uB
kA + 6B
A
B

A

B

C
M+ puB + kC

A
B

A + puB + kC
C

A
A+ puB + kC
B
C

A+ puB + kC
A
B
C

e R%3)

€ R4

€ R®3)

€ R®3)

€ R®3)

c R(473)

c R4

€ R®D

rank

rank

rank

rank

rank (g) =2
rank (g) =2
rank <g) =2
rank (g) =2
e (4) =2

QW QW

QW
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We put

o O

jem i)

— O

o O

S o

oS o

& =

o=

o O

S O

jen i)

o O

S o

O

and for each 6 € R*, we set

o O

S o

o w

o O O

S O O

O

o O

o O

S -

513;5 =

)

523;5 =

bl

534;6 =

b

o O

oS o

o O

o O O

S O O

— O O

o O

o O

— O

524;6

For any A\, u, x € R*, we put

oo o o oo
oo o o oo
o < X ~< IO
Il I
2 2
< =
N <t
“r W
oo o o oo
o oo o oo
— < 3 < o =
Il Il
3 3
=< =<
— )
“w v

and

o O OO
o O OO

— < 3 €

fk,u,n
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We also put for any A\, u, &, § € R,
1 0 O 1 0 0
0 1 0 A wp O
512;/\,u,m75 A L ol flS;A,u,n,é = k 65 0l
k 6 0 0 1 0
1 0 0 A wp O
A p O 1 0 0
514;A,u,n,5 x & 01l 523;>\,u,n,6 = 01 1
0 1 0 k 6 0
and
A p O
1 0 0
524;)\,p,n,6 = kK 6 0
0 1 0

Lemma 3.18.
(a) The stabilizer of 0 is GLg 4.
(b) The stabilizer GL3 4(3) of & (i = 1,2,3,4) is given by

(3.8) {((i 2) ,a) € GLys

a € R(2"1), g€ GLy, ac€ R(4’3)} .

(c) The stabilizer GL3 4(i7;0) of &j:6 (1 < i < j < 4) is given by (3.7).

(d) The stabilizer GL3 4(3; A\, 1) of &ix, 0 (1 <4 < 4) is given by (3.7).

(e) The stabilizer GLg4(\, pt, &) of Ex e i given by (3.7).

(f) The stabilizer GL3 4(ij; A, pt, k,6) of Eijirnpum,s (1 <@ < j < 4) is given by

,a | € GL3 4| a,b,c(#£0) €R, a € R*:3)

Q O~
= O
o O O

According to Theorem 3.2, we obtain the following.

Theorem 3.19. Let n =3 and m = 4. We put

ai; Q2 (a3
o « «
21 22 23 c R(473).
31 Q32 Q33
Q41 Q42 Q43

a = (o) =

Then the irreducible unitary representations of GL3 4 are the following:
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The irreducible unitary representation p, where the restriction of p to A is
trivial and the restriction of p to GLs is an irreducible unitary representation
Of GLg .

The representation pe, := Ind gii*i(i)r& (1 <4 < 4) induced from the unitary
irreducible representation T¢, of GL3 4(i). Here T¢, is of the form

(¢ o) =n ()

where me, is the irreducible unitary representation of R? x GLs.

The representation pe, ; = Ind géz’j(ij,é)rgzj;é (1 <i<j<4) induced from

the unitary irreducible representation e, s of GLs34(ij;6). Here 1¢,, s is of
the form

10 Ti(o a; 10
Teijis ((CL g) 7(aij)> = 62 (o1 +daj1) CTMeays ((a g)) y

where me,, ; is the irreducible unitary representation of R? x GLo.

The representation p(&1;x,,) = Ind gﬁjj(m M)T(fl;)\#) induced from the uni-

tary irreducible representation T(&1.x,,) of GLs a(1; A, ). Here T(&1:a,) 15 of
the form

T(fl;)\yﬂ) ((Cll 2) 7(aij)> — 627ri(a21+>\a31+ua41) . W(fl;)\,#) ((i 2)) ,

where w(&1;x,,) s the irreducible unitary representation of R? x GL,.

The representation p(§2:x,,) = Ind gﬁjj(zo\ T (E2ia) induced from the uni-

tary irreducible representation T(&a;x,u) of GLga(2;\, ). Here 7(€2,0,,) is of
the form

T(§2;)\,M) <(3; 2) ,(Olij)> = 62wi(a11+)\a31+ua41) . 77(52;)\,#) (((]l‘ 2)) ,

where m(€a;5,,,) 18 the irreducible unitary representation of R? x GLs.

The representation p(&3;x,,) := Ind 322’1(3'/\ T (&) induced from the uni-

tary irreducible representation T(€3.x,,) of GL3 4(3; A, ). Here 7(€3.x,) 15 of
the form

T(fg;)\7u) (((11 2) ,(Oéij)) — ezﬂi(a11+>\a21+ua41) . 7-‘-(53;)\,”) ((i 2)) ,

where (&35 ,,) is the irreducible unitary representation of R? x GLs.
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The representation p(€a;x,,) = Ind giz‘z(&)\ #)7(549\,#) induced from the uni-

tary irreducible representation T(€a;x,,) of GLga(45 X, ). Here 7(a;x,p) is of
the form

7'(54;)\4‘) (((11 2) 7(aij)) — ezﬂi(a11+>\a21+ua31) . ﬂ(fl;/\,u) (((11 2)) ,

where 7(€1;x,,) is the irreducible unitary representation of R* x G L.

The representation p(§x,,.) == Ind gii‘iu " K)T(@\#ﬁ) induced from the uni-

tary irreducible representation T(§x k) 0of GL3 a(A, w1, k). Here T(§x ) is of
the form

1 O iy, 1 31 '41 1 0
T(f,\)u,K) ((a g) 7(aij)) = 62 (a114+Aaz1+pazi+rog )'W(fA,u,n) ((a g)) ,

where T(&x ) s the irreducible unitary representation of R? x GLs.

. . GL3 4 .
The representation p(&i2,a,,5) = Ind GL3’4(12;)\)#’K75)7(512;)\7#7&5) induced

from the unitary irreducible representation T(§12,x,,x,6) 0f GL3.4(12;\, i, &, ).
Here 7(&12;x,,0,6) s of the form

) (5 3) ()

, , 10
eQTrZ(Otu+Oézz+>\0631+,u0t32+f€0641+50142) . 7T(§12;)\,p,,n,5) ((a g ;

where 7T(§12;>\%,€’5) is the irreducible unitary representation of R? x G Ls.

. . GL3,4 ;
The representation p(&iz;apu,s) = Ind GL3’4(13;/\7“7K75)7’(513;)\%,“5) induced

from the unitary irreducible representation T(&13,x,pu,x,5) 0f GL3 4(13; A, 11, &, 9).
Here 7(&13;,,0,6) @5 of the form

) (5 3)-(en)

2rilontasztrazituazthantian) p(ggn 5 ((Cll 2>> ’
where m(§13,0,u,6,6) 18 the irreducible unitary representation of R? x GLs.

. aL .
The representation p(§1axps) o= Ind G2y T(E1aiaum,s) induced from

the unitary irreducible representation T(§1a;x uk,6) of GLza(14; A, 1, K, 6).
Here 7(&1a;x,,0,6) s of the form

T(E1457 1,10 (((11 2) a(‘%‘))

) 1 0
627”(&11+a42+>\a21+ua22+f€a31+5a32) '7(514;A,y,n,6) ((a g ;
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where m(E1a,x u,0,6) 18 the irreducible unitary representation of R2 x GLs.

. GL .
(1) The representation p(&a3;x,u,6) = Ind GL;:j(%;/\’M)7‘(523;,\%;@,5) induced from

the unitary irreducible representation T(§23.xpur,6) 0f GL3.4(23; A, 1, K, 0).
Here T(&23,3 u,6,6) 18 of the form

(€23 1, ,01) ((i 2) »(aij))

) 1 0
_ 6271'2(0421+0432+)\0611+H0412+I€0t41+5Oé42),W(€23;>\71L7H76) <(a g ,

where m(&a3.x,u,5) 18 the irreducible unitary representation of R? x GLs.

, GL )
(m) The representation p(€24;x,.6) := Ind Gsz(24;/\#)7'(524;%“,/{,6) induced from

the unitary irreducible representation T(&au;npk,5) 0f GL3a(245 X, 1, K,0).
Here T(&24:x ,5,6) 1S of the form

T(E2457p0,m,10) ((i 2) »(az’j))

i ) ) 1 0
6271'2(0421+C¥4z+>\0411+#0¢12+l€0431+5Oész) . 77(514;)\7%&6) ((a g ,

where m(§1a;3,u,x,5) 15 the irreducible unitary representation of R? x GLs.

Remark 3.20. The other cases n > 4 are more complicated than the previous
cases n = 2, 3 but can be dealt with in a similar way.

We note that GL, ,, acts on R(™™) on the right transitively by
z-(g,a) :=x'g +a, =z ac R™™ g e GL(n,R).
For A € C, we define the representation 7y of GL,, ,, on L? (R(m’”)) by

(3.9) (ma((g, @) f) () := |det g| " f(x - (g, a)),

where (g,a) € GLy, 1, f € L*(RU™™). Then m is unitary if and only if A € 1 +4R.
In fact,

Ima((g, ) FlI 22 mmyy = /R( )\detgl’Af(xtg’l+a)ldet9\**f(xtg*1+a)dl’

= [ et )

|det g|' 21 Hf”%z(R(nm»)y

We recall the following fact.
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Theorem 3.21. Suppose H is a subgroup of GL,, and let H, ,, := HxR™™)  Then
(77l #,p s LHRI™™)) s irreducible if and only if the action of Hy,,, on R™™ s
ergodic.

According to the above theorem, if A € % + iR, then 7y is irreducible because
GL,,  acts on R(™") ergodically.
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