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ABSTRACT. Some recent inequalities for expectation and cumulative distribution function
are improved.
1. Introduction

In the recent paper [1] or [3], Barnett and Dragomir, using the pre-Griiss in-
equality, established some inequalities for expectation and the distribution function.
In the paper [5], Cheng and Sun established the following variant of Griiss inequal-

ity.

Lemma. Let f, g: [a,b] — R be two integrable functions such that
m< f(x) <M, forallx € [a,b],
where m, M € R are constants. Then

b i a /ab f(x)g(z)dz — (b_la)2/ab f(x)dx /abg(x)dm
b

(M —m) [°
= 2(b—a)/a

Further, Cerone and Dragomir [4] have proved that 3 in (1.1) is sharp constant.
In this paper, using the above Lemma we shall improve the inequalities of the
expection and the distribution function given by Barnett and Dragomir [1].

(1.1)

dx.

O R

2. Some inequalities for expectation

Theorem 1. Let X be a random variable having the probability density function
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f i [a,b] — R. Assume that there exist the constants M, m such that 0 < m <
@) <M <1 a.e. t onla,b], then we have the inequality:

(a+b)| 1 2
(2.1) R

where E(X) is the expectation of the random variable X .

Proof. Tf we put g(t) =t in (1.1), we obtain

I I I
2.2 t)dt — —— C— t
(22) = | = [ s = [
(M—m)/b 1 /b
< = - .
S 0= /, T b—al tdt| dz
and as
b b b
/tf(t)dt:E(X), /f(t)dt:l, L /tdt:aer
o o b—a /, 2
and
b 1 b
/ mf—/ tdt| dx
a b—a a
atb b
= /2 a+b7tdt+/ SR
o 2 atb 2
B (b—a)?
- Y
then by (2.2) we deduce (2.1). O

Remark 2. Theorem 1 is an improvement of Theorem 9 in [1].

To point out a result for the p-moments of the random variable X, p €
R\{-1,0}, we need the following p-Logarithmic mean:
pptl _ gp+1 /P
M, a,b = |7 )
o) = | =]

where 0 < a < b.

Theorem 3. Let X and f be as in Theorem 1 and E,(X) be the p-moment of X,
i.e.,

E,(X) = / ",



Probability Density Functions are Bounded Using an Improvement of Griiss Inequality 425

which is assumed to be finite, then

(2.3) |Ep(X)—MZE(a,b)]|
(M—m) | 2p bPl 4Pl
< M= U _ZE pgptl _ P z v
< B2 o)~ (a4 0)aag )+ 1

Proof. Taking g(t) = t? in (1.1), we obtain

10 10 10
2.4 —_— P ft)dt — —— t)dt - —— tPdt
(2.4 el Ry O |
(M —m) /b
< = | [P — MP(a,b)|dt.
- 20b-a) J, | b (@ )|
Since
b
(2.5) /a\tLMg(a,b)ut
My (a,b) b
_ / (Mg(a,b)—tp)dtJr/M . b)(tp—Mg(a,b))dt
2p prtl 4 gptl
= —_MP(a,b) — b)MP(a,b) + —————
PR (a,b) — (a+b)MJ(a,b) + P
if p> 0 and
b
(2.6) / 7 — M2(a,b)|dt
Mp(a,b) b
_ / (tp_Mg(a,b))dt+/M( | (MpLa.b) =i
a p\Q,
2p pPHL 4 gpt!
= ——=_MP*Ya,b b)MP(a,b) — ——————
PR (a,b) + (a + b) M} (a,b) PRI
if p < 0. By (2.4), (2.5) and (2.6), we obtain (2.3). O

Example 4. Let p =2, a = 1 and b = 2 in (2.3) and (5.6) in [1], respectively.
Then we have

(27) max) -3y < WG
and
(2.8) |Ex(X) — M3(1,2)] < @(M—m).

We note that the bound in (2.7) is better than the one in (2.8).
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If we consider the logarithmic mean

b—
M_l(a,b) = L((Z,b) = ﬁ, 0<a< b,

and define the (—1)-moment of the random variable X by
b
t
E—l (X) = / @dt

then we have the following theorem.

Theorem 5. Let X and f be as in Theorem 1, then

(2.9) |E_1(X) = M~Ma,b)| < (M > m) [ln (lefba’ b)) +(a+b) M~} (a,b)—2|.

The proof is similar to the proof of Theorem 2 and so we omit the details.

Example 6. Let a = 1 and b = 2 in (2.9) and (5.7) in [1], respectively. Then we
have

(2.10) |[E_1(X)—M-/(1,2)] < (In2-In(In2)—1)(M —m)
and

—9(In2)2\ &
(2.11) |E_1(X) — M-)(1,2))| (M

s )2(M—m).

We note that the bound in (2.10) is better than the one in (2.11).
The following theorem also holds.

IA

Theorem 7. Let X and f be as above. If

1/2

b
U“(X):V (t—u)Qf(t)dt] . nelad,

then we have the inequality

a 3 — ) —(u—a)d
(212) [03(0X) A < (M —m) [A) (= 152y 2 a4 Lm0l

b—a)?
where A(p) = (p — GTH’)? + %

Proof. If we put g(t) = (t — p)? in (1.1), we get

b b b
= | e —nra— o= [ rwar = [ e

(M —m) [°
= 2(b—a)/a

(2.13)

1 b
(t—p)* - m/ (t — p)*dt|dt,
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and as f; ft)dt =1,

L P (- ()= (b—p)(u—a) + (u—a)?
b—a/a(t*“)th - 3(b— a) = 3
= - P a0
b 1 b b
/ (6=’ - bf/ (¢ = 't dt:/ [t = 1)* = A(w)] at
ptA(u)t/? b
= / Umo—&—m%a+/;myﬂw—uf—Aw»a
a 3 — )3 — —aq)3
= 24(u)(p— ;b)+%A(M)§+ (b—p) 3(M )
then by (2.13) we deduce (2.12). O

For p = (a + b)/2, we have the following corollary that improve the Corollary
13 in [1].

Corollary 8. With the above assumptions and denoting 0o(X) = 0 (4442 (X), we
have the inequality

1

(b—a)?
= 36v/3

12

5(X) -

(M —m)(b—a)®.

The following theorem also holds.

Theorem 9. Let X and f be as above. If

b
Au(X) = / [t — Wl fdt, e (b,

then we have the inequality

—p)? —a)? —a
ML) = B < () [P0l 2B |

—a)?
where B(p) = 52-[(p — “E2)% + %]

Proof. If we put g(t) = |t — p] in (1.1), we have

1 b 1 b 1 b
[ - ulfdt - —— [ f@)dt—— [ |t - pldt
b—a /, b—a J, b—a J,

(M —m) /b 1 /b
< - 7 — _— —_
S S0-a ), [t — ul e |s — plds

(2.14)

dt,
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and as ff ftydt =1,

1P 1
—_— t — pldt
b—a/a| wl b—a

I
| —
S~
=
=
|
~
+
=
<o
-
|
=
QL
Lt

dt

b 1 b
[ === [ 1= s

b
/ It -l — B(u)| dt

o b
[ =B+ [le- - Bl

p—B(n) Iz
[ B -ods [ - B
a p—B(n)

pt+B(p) b
w7 B —dee [ - B

+B(pn)
- et g+ 282,

2
Finally, using (2.14), we deduce the desired inequality. |
For p = pg = GTH’ in Theorem 9, we have the following corollary that improve

the Corollary 14 in [1].

Corollary 10. With the above assumption, we have the inequality

b—a
4

1
< E(M —m)(b—a)?.

4,03 -

3. Some inequalities for the cumulative distribution function

The following theorem contains an inequality which connects the expectation
E(X), the cumulative distribution function Pr(X < z) = F(z) = [ f(t)dt, and
the bounds M and m of the probability density function f : [a,b] — R. In [2],
Barnett and Dragomir have established the following equality:

b b
31)  (b—a)F(x)+ B(X) b= / (o AP (t) = / a6 F(D)dL,
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where

t—a, ifa<t<z<b,
p(l‘,t)z .
t—b, ifa<z<t<h.

Theorem 11. Let X, f, E(X), F(-), and m, M be as above, then

b—a
2

1
<
-8

(3.2) ‘E(X) +(b—a)F(z) —x — (M —m)(b—a)?

for all z € [a,b].
Proof. Applying the equality (3.1) and putting ¢g(¢) = p(z,t) in (1.1), we get

(3.3)

b b
B(X) + (b= a)F(z) —b— — / p(a, t)dt - / F(t)dt

b—a /,
- <M—m>/”
< 5 ’

Observe that

b
p(z,t) — ﬁ/ p(z, s)ds| dt.

b

b
platyit=o- 02 [ fde—1,
a

b—a /,

b 1 b
/a p(aat)—m/a p(x, s)ds|dt
T _ b _
- / t—:v—&—ba‘dt—i-/ Pt 9
a 2 xT 2
T . b o
and / tz+b2a‘dt+/ PR el P9
@ bh— e b bh—
- /(t—x+—a)dt+/ ’ (m+—a—t)dt+/ (t—o——2)dt
; 2 . 2 ot bz 2
(b—a)?
4 b
ifagxg’%"b,
w—tzt b—a ® b—a b b—a
and / (@ — —t)dt/ (t—x+—)dt+/ (@t 2% pyar
; 2 bz 2 . 2
(b—a)?
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if ot <z <.
Using (3.3), we deduce (3.2).

Remark 12. If in (3.2), we choose x = (a 4+ b)/2, then we get the inequality

a+b
2

(3.4) ‘E(X)Jr (b—a)Pr(X < )b‘ < (M —m)(b—a)’.

1

8

The inequality (3.4) is an improvement of inequality (5.21) in [1].
The following theorem also holds.

Theorem 13. Let X, f, F(-), and m, M be as above, then we have

< }(M—m) [(b—a)z

— 4

(b—a)
2

_a+b

F(z) -

2|

+ (z

(3.5) ‘E(X) + - b;‘r

for all x € [a, b].
Proof. Applying the equality (3.1), we get

b

(3.6) (b—a)F(x)+E(x)—b:/x(t—a)f(t)dt+/ (t — b)f(t)dt,

for all x € [a, b].
Applying (1.1), we get, for x € [a, b],

1

(3.7) x_a/;(t—a)f(t)dt—xia/j(t—a)dt-xi(l/:f(t)dt‘

< m/j (t—a)—xla/:(t—a)dt‘dt,
= (M -m)(z—a)

and, similarly,

b b b
bix/x(t—b)f(t)dt—bix/z(t—b)dt-ﬁ/m F(t)dt

1
= g(M—m)(b—a:).

From (3.7) and (3.8), we can write

(3.8)

* r—a 1 9
(3.9) / (t—a)f(d~ " UF@)| < L - m)a—a)
and ,
(3.10) / (t—b)f()dt+ = - F(x))‘ < %(M —m)(b— )2
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for all z € [a, b].
Summing (3.9) and (3.10) and using the triangle inequalities, we deduce that

/m(t—a)f(t)dt—&—/ (t —b)f(t)dt — b;aF(x)+ b;x

x

1
< SO —m)@—a) + (-2
1 (b—a)? a+b
= M-m)—F—+ (- )?]-
4 2
Using the identity (3.6), the desired inequality (3.5) is obtained. O

Remark 14. If we choose in (3.5) either x = a or = b, we get the inequality

(3.11) ‘E(X) a+b‘ L

5 <§(M—m)(bfa)2,

and thus recapture (2.1). We note that the inequality (3.11) is an improvement of
the inequality (5.29) in [1].

Remark 15. If in (3.5) we choose x = (a + b)/2, then we get

5 )Pr(X < 5 ) — 1 < —(M —m)(b—a)?,

(3.12) ‘E(X)—}—(ba a+b a+3b'_116

The inequality (3.12) is an improvement of the inequality (5.30) in [1].
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