References
- Real Analysis Exchange v.19 no.1 Dimension of the perturbed Cantor sets Baek, I.S.
- Adv. in Math. v.92 Multifractal decompositions of Moran fractals Cawley, R.;Mauldin, R.D.
- Proc. London Math. Soc. v.65 Multifractal decompositions of digraph recursive fractals Edgar, G.A.;Mauldin, R.D.
- The Geometry of Fractal sets : Mathematical Foundations and Applications Falconer, K.J.
- Techniques on Fractal Geometry Falconer, K.J.
- Phys. Rev. Letter v.50 Characterization of strange attractors Grassberger, P.;Procaccia, I.
- Phys. Rev. A. v.33 Fractal measures and their singularities : The characterization of strange sets Halsey, T.C.;Jensen, M.H.;Kadanoff, L.P.;Procaccia, I.;Shraiman, B.J.
- Physica D. The infinite number of generalized dimensions of fractal and strange attractors Hentschel, H.;Procaccia, I.
- Topology and its Applications v.122 Dimension of measure on perturbed Cantor sets Ikeda, S.;Nakamura, Munetaka
- Nonlinearity v.6 Singularity spectrum for recurrent IFS attractors King, J.F.;Gerobnimo, J.S.
- Adv. in Math. v.116 A multifractal Formalism Olsen, L.
- Math. Proc. Camb. Phil. Soc. v.100 The measure theory of random fractals Taylor, S.J.
- Lecture Notes in Math. Ergodic Theory - Introductory Lectures Walters, P.
- J. Phys. A : Math. Gen. v.30 Fractional integral associated to generalized cookie-cutter set and its physical interpretation Zu-Gua Yu;Fu-Yao Ren;Ji Zhou