Mutifractal Analysis of Perturbed Cantor Sets

  • Baek, Hun Ki (Department of Mathematics, Kyungpook National University) ;
  • Lee, Hung Hwan (Department of Mathematics, Kyungpook National University)
  • Received : 2005.05.09
  • Published : 2005.12.23

Abstract

Let $\left{K_{\alpha}\right}_{{\alpha}{\in}{\mathbb{R}}}$ be the multifractal spectrums of a perturbed Cantor set K. We find the set of values ${\alpha}$ of nonempty set $K_{\alpha}$ by using the Birkhoff ergodic theorem. And we also show that such $K_{\alpha}$ is a fractal set in the sense of Taylor [12].

Keywords

References

  1. Real Analysis Exchange v.19 no.1 Dimension of the perturbed Cantor sets Baek, I.S.
  2. Adv. in Math. v.92 Multifractal decompositions of Moran fractals Cawley, R.;Mauldin, R.D.
  3. Proc. London Math. Soc. v.65 Multifractal decompositions of digraph recursive fractals Edgar, G.A.;Mauldin, R.D.
  4. The Geometry of Fractal sets : Mathematical Foundations and Applications Falconer, K.J.
  5. Techniques on Fractal Geometry Falconer, K.J.
  6. Phys. Rev. Letter v.50 Characterization of strange attractors Grassberger, P.;Procaccia, I.
  7. Phys. Rev. A. v.33 Fractal measures and their singularities : The characterization of strange sets Halsey, T.C.;Jensen, M.H.;Kadanoff, L.P.;Procaccia, I.;Shraiman, B.J.
  8. Physica D. The infinite number of generalized dimensions of fractal and strange attractors Hentschel, H.;Procaccia, I.
  9. Topology and its Applications v.122 Dimension of measure on perturbed Cantor sets Ikeda, S.;Nakamura, Munetaka
  10. Nonlinearity v.6 Singularity spectrum for recurrent IFS attractors King, J.F.;Gerobnimo, J.S.
  11. Adv. in Math. v.116 A multifractal Formalism Olsen, L.
  12. Math. Proc. Camb. Phil. Soc. v.100 The measure theory of random fractals Taylor, S.J.
  13. Lecture Notes in Math. Ergodic Theory - Introductory Lectures Walters, P.
  14. J. Phys. A : Math. Gen. v.30 Fractional integral associated to generalized cookie-cutter set and its physical interpretation Zu-Gua Yu;Fu-Yao Ren;Ji Zhou