
ETRI Journal, Volume 27, Number 5, October 2005 Seong Oun Hwang et al. 595

The widespread use of the Internet has led to the
problem of intellectual property and copyright
infringement. Digital rights management (DRM)
technologies have been developed to protect digital content
items. Digital content can be classified into static content
(for example, text or media files) and dynamic content (for
example, VOD or multicast streams). This paper deals with
the protection of a multicast stream on set-top boxes
connected to an IP network. In this paper, we examine the
following design and architectural issues to be considered
when applying DRM functions to multicast streaming
service environments: transparent streaming service and
large-scale user environments. To address the transparency
issue, we introduce a ‘selective encryption scheme’. To
address the second issue, a ‘key packet insertion scheme’
and ‘hierarchical key management scheme’ are introduced.
Based on the above design and architecture, we developed
a prototype of a multicasting DRM system. The analysis of
our implementation shows that it supports transparent and
scalable DRM multicasting service in a large-scale user
environment.

Keywords: Copy protection, DRM, multicast.

Manuscript received Feb. 16, 2005; revised May 31, 2005.
Seong Oun Hwang (phone: + 82 42 860 4990, email: sohwang@etri.re.kr), Jeong Hyon

Kim (email: bonobono@etri.re.kr), Do Won Nam (email: dwnam@etri.re.kr), and Ki Song
Yoon (email: ksyoon@etri.re.kr) are with Digital Content Research Division, ETRI, Daejeon,
Korea.

I. Introduction

The rise of the Internet has led to great changes in our lives,
both physically and psychologically, over a very short period of
time. In fact, the Internet has led to the creation of another world,
the so-called digital world. It has also greatly facilitated the
distribution and exchange of information. However, a number of
problems lurk behind the bright side of the Internet. One key
problem is the issue of intellectual property and copyright
infringement. Digital content by nature is very vulnerable to
unauthorized distribution and use. For example, downloaded
content at the user’s side is easy to copy, so it is susceptible to
illegal copying and has brought about a copy protection problem.
Digital rights management (DRM) technologies were developed
to prevent users from unauthorized copying of digital content, to
control the use of digital content, and to enable the development
of digital distribution platforms on which innovative business
models can be implemented. They were originally based on
work carried out as part of the European Commission-funded
IMPRIMATUR project (1995-1998) [1], which included the
development of a business model for digital content distribution
(which later became the business model of MPEG-21 [2]-[4]),
and analyses of rights management information (RMI) and
watermarking. Besides MPEG-21 [3], numerous DRM
standardization organizations appeared around the year 2000,
such as Secure Digital Music Initiative (SDMI), Open eBook
Forum (OeBF), DVD Forum, Internet Digital Rights
Management (IDRM), Digital Object Identifier (DOI), Open
Platform Initiative for Multimedia Access (OPIMA), and
Common Intrusion Detection Framework (CIDF). Following
those organizations, World Wide Web Consortium (W3C),
Internet Streaming Media Alliance (ISMA), TV-Anytime, Open
Mobile Alliance (OMA), Digital Home Working Group

Protection of MPEG-2 Multicast Streaming
in an IP Set-Top Box Environment

 Seong Oun Hwang, Jeong Hyon Kim, Do Won Nam, and Ki Song Yoon

596 Seong Oun Hwang et al. ETRI Journal, Volume 27, Number 5, October 2005

(DHWG), and Digital Media Project (DMP) were founded.
However, almost all the organizations that started in early 2000
including W3C and DHWG stopped their activities, the
exception being MPEG-21. TV-Anytime and DVB provided
requirement analysis documents and technological architecture
specifications but didn’t make any further progress. MPEG,
OMA, DMP, and ISMA have continued their work up to the
present. MPEG-4 Intellectual Property Management and
Protection (IPMP) Extensions [5] and MPEG-2 IPMP
Extensions [6] became international standards. MPEG IPMP
provides standards for protection and management of
multimedia content by introducing a ‘hooks’ architecture and
interfaces between IPMP tools. MPEG-21 [3], which is still
under development, aims at defining a normative open
framework for multimedia delivery and consumption for use by
all the players in the delivery and consumption chain. MPEG-21
identifies and defines the mechanisms and elements needed to
support the multimedia delivery chain as well as the relationships
between and operations supported by them. The functionalities
of such a multimedia framework architecture have been grouped
into seven elements: digital item declaration, digital item
identification and description, content handling and usage,
intellectual property management and protection, terminals and
networks, and content representation. OMA [7] was formed in
June 2002. Its goal is to deliver high quality, open technical
specifications based upon market requirements that drive
modularity, extensibility, and consistency. In September 2002,
OMA released DRM specification version 1.0. The specification
concentrates on content packaging and expression of rights and
permissions; it does not include strong security mechanisms to
protect the content. OMA DRM specification version 2.0
released in February 2004 provides additional features and a
significantly higher level of security to protect high-value digital
content like mp3 audio files or video clips. DMP [8] was
established in October 2003 with the mission to promote the
development, deployment, and use of digital media that
safeguard the rights of creators to exploit their works, the wish of
consumers to fully maximise the benefits of digital media, and
the commercial interests of value-chain players to provide
products and services. DMP released in April 2005 its Phase I set
of specifications that contain a comprehensive technology
specification for interoperable digital rights management as well
as applications within and across media value chains. The
documents address use cases, DRM architecture, interoperable
DRM platform, value-chains, registration authorities, and
terminology.

There have been many papers about DRM technology. Hwang
and others [9], [10] proposed an extended IMPRIMATUR model
that supports trust among distribution entities and expresses
efficiently multiple steps of content/rights distribution in the real

world. Park and colleagues [11] proposed a taxonomy for DRM.
They divided the control architecture into eight categories
including “no control” and seven control mechanisms that can be
applied to DRM architectures. Rosenblatt and others [12]
published an excellent book on DRM that addresses all of its
aspects including its business models, legal ramifications,
standards, and proprietary core technologies. Lee and others [13]
proposed four different popular models of content distribution in
the real world and also pointed out the weak points of the
IMPRIMATUR model from the viewpoint of protecting the
rights of distribution participants and supporting the four models.
Jeong and colleagues [14] proposed a key management scheme
that can deliver the key used to protect a digital content from its
packaging point until its consumption point.

Unlike downloaded content, streaming content has avoided
the copy protection problem by disallowing local storage at the
user’s PC. However, due to the appearance of programs such
as the VOD Recorder, Hi Net Recorder, and Net Transport that
enable users to save streaming content illegally, streaming
content is not free from the copy protection problem any more.
Content streaming is a technology for real-time transmission
and playback of digital multimedia data such as video or music
through the Internet. The majority of streaming uses unicast,
where a separate copy of the stream is sent to each viewer.
However, unicast is very inefficient in terms of bandwidth
when media are delivered to a large number of users. In a
multicast, only one copy of a stream is sent out from a source
and is replicated as needed in the network to reach as many
end-users that want it. Multicast is seen as the means of
making the Internet suitable for streaming services and of
lowering the costs of distribution.

Recently, researches on DRM in the content streaming
environment have been done, most of which cover only unicast
streaming. One of these researches is being done by ISMA.
ISMA, a non-profit organization whose mission is to accelerate
the adoption and deployment of open standards for streaming
rich media content such as video, audio, and associated data
over Internet protocols, released ISMA Encryption &
Authentication Specification V. 1.0 [15] in February, 2004. The
purpose of ISMA Encryption & Authentication Specification
(also called ‘ISMACryp’) is to provide interoperability
between ISMA-compliant [16] streaming servers and players,
when DRM is added in an ISMA-compliant environment.
ISMA Encryption & Authentication Specification describes
how to encrypt, authenticate and packetize MPEG-4 contents.
There are many companies that provide proprietary DRM
technology to protect streaming contents. Microsoft [17],
Widevine [18], and Verimatrix [19] released their products to
provide DRM functions in a video-on-demand (VOD) service
environment where media is streamed in a unicast. Although

ETRI Journal, Volume 27, Number 5, October 2005 Seong Oun Hwang et al. 597

research on VOD unicast streaming DRM has been done
actively, DRM research in a multicast streaming environment
has been partly done by a few companies [20], [21]. Their
approaches are very limited in a multicasting environment.
Their key servers issue keys per user just before a user gets a
multicast streaming service. Therefore, a sudden increase of
joining users in a multicast streaming service might cause
substantial overhead or system failure to key servers. This
licensing mechanism is also vulnerable to users’ frequent
changing of channels. Here we have a strong need to develop
DRM functions considering the features of a multicasting
service environment: large number of user groups, real-time
service requirements, support of a live stream, frequent
changing of channels, and size dynamics of users
joining/leaving channels at a particular time.

The remainder of this paper is organized as follows. In
section II, we provide an overview of the proposed DRM
system. The design principles and architecture issues related to
a multicasting DRM environment are discussed. The key
architecture and key update mechanism to enhance security
and performance of the proposed system are also introduced.
Section III presents implementation details of system
components comprising our prototype DRM system. Section
IV presents an analysis of our system. Section V concludes the
paper with a discussion of the contribution of the present paper
and future work.

II. System Overview

The proposed DRM system is one that prevents the illegal
use of content and controls the use of content according to
legally purchased usage rights. DRM is applied to MPEG-2
media content in a set-top box (STB), which is connected to an
IP network such as ADSL, VDSL, or Ethernet. A decoder and
player are installed on the STB to receive and process streamed
data from streaming servers. Decoded data are displayed on a
TV set connected to the STB. This section discusses major
design considerations for a DRM system in such an
environment.

1. Design Considerations

• Support of DRM independent of existing streaming
systems

DRM systems should be designed to apply DRM functions
easily without major modifications of existing encoders/decoders,
stream servers, and streaming players. It should be applicable to
all streaming servers that support MPEG-2 standards and
standard streaming protocols such as real-time transport protocol
(RTP) [22] and real-time streaming protocol (RTSP) [23]. To

achieve this, all data created during the packaging process should
be inserted appropriately without breaking the MEPG-2 standard
format. Packaging is the process to transform original contents
into a protected distribution format by binding content with
metadata and using a copy protection mechanism (for example,
encryption). When an appropriate insertion method is not
available, it should be stored separately and appropriate binding
mechanisms should be provided.

• Transparent (seamless) streaming service
Any DRM-enabled streaming service should be

indistinguishable from normal streaming services with no
DRM applied. Any degradation of performance or display
quality should not occur at the user’s end. VCR functions such
as fast-forward or rewind should be supported the same way as
they are in non-DRM streaming systems. Real-time
unpackaging is critical to performance. To alleviate a delay
time occurring during the unpackaging process, we introduce a
selective encryption scheme that allows us to select portions of
a multimedia data stream for encryption.

• Toolkit-embedding approach
Under streaming system environments, it is not easy to

provide DRM functions as a form of standalone systems or
packages. To support and comply with existing streaming
servers and players, an embedded toolkit approach is safer and
more easily applicable than the system approach. In addition, it
gives more flexibility in supporting DRM functions in a variety
of streaming service models.

• Support of a large-scale user environment
A multicast streaming service shares some of the following

features of a broadcasting service: a large-scale group of
concurrent users should be supported seamlessly and when
users change channels, and real-time switching of channels
without any recognizable delay should be provided at the
user’s viewpoint. Existing approaches deployed by most VOD
DRM systems and a few multicast DRM systems [20], [21]
using a separate key transport channel per user are not
appropriate in a multicast streaming service environment
because a sudden increase of users joining in a multicast
streaming service usually causes substantial overhead or a
system failure at the key server. To deal with this problem, we
insert key packets into the multicast streaming channel rather
than opening separate key transport channels per user (the so-
called key packet insertion scheme).

• Minimization of key update overhead
A DRM system should be designed to make as small as

possible the number and quantity of key transmissions that are
needed to rekey a multicast group. The design should also

598 Seong Oun Hwang et al. ETRI Journal, Volume 27, Number 5, October 2005

minimize the storage requirements for a multicast group and
support a scalable group key update operation. The most
critical point is that the key update process should be done real-
time enough so that it should not cause any delay or
degradation during a multicast streaming service. To achieve
efficiency of the key update process, we introduce a
hierarchical key management scheme consisting of media keys,
channel keys, and package keys.

• End-to-end security
Advanced encryption key distribution techniques should

ensure that content is only delivered to authorized users and is
used under the authorized control of the DRM facilities.

• Support of live real-time streaming
Unlike VOD streaming services, multicast service usually

entails live streaming service. To support DRM functions in the
case of live streaming, we adopted a real-time encryption
mechanism using a DRM multicaster. Therefore a streaming
server sends packets in a multicast to a particular internal
multicasting address that our DRM multicaster listens to. To
support this, our DRM multicaster is designed to encrypt
incoming packets in real-time and send them out to external
multicasting addresses.

• Security requirements
Keys should have a predetermined lifetime and be periodically

refreshed to provide a high level of security. Key materials
should be delivered securely to members of the group. Key
mechanisms should also support secure recovering from a
compromise of some or all of the key material. To achieve these
goals, we provide a key interface to set a key lifetime and key
update mechanism based on the current key-next key scheme.

2. Functional Architecture

Figure 1 shows the functional architecture of the proposed
system. The content portal authenticates a user and authorizes

Fig. 1. Functional architecture.

Content
portal

Key management
server

Streaming
server

DRM
multicaster

(1) Streaming URL

Set-top box

(3) Real-time multicasting
of media streams

(4) Real-time multicasting
of protected media streams

(2) Key

the user to use a service. The key management server (KMS)
issues keys to allow the user to play the protected stream. A
streaming server streams the requested content using a
streaming protocol to the internal multicast address using the
multicast channel. DRM multicaster encrypts incoming
packets from a streaming server in real-time and streams them
to the users using the multicast channel.

3. Key Architecture

Keys used in multicast key management are largely
classified into two kinds of keys, a service-related one and a
subscriber-related one. Service-related keys consist of a media
key, channel key, and package key. Subscriber-related keys
include an STB secret key and broadcast key. Figure 2 shows
the hierarchical structure of the keys. These keys use the
advanced encryption standard (AES) [24] encryption algorithm
with a 128-bit key. Note that the term ‘group key’ is used to
collectively refer to the channel key and package key, hereafter.

Fig. 2. Hierarchical key structure.

KMS

SK

PK 1 PK 2 BK

CK 11 CK 1m CK 21 CK 2n

Unicast

Multicast

MEK 1
MEK 2

MEK 3

MEK i
MEK j

MEK k

…

• Media key (MEK)
The media key is used to encrypt a media stream transmitted

through a channel. The media key is encrypted under the
corresponding channel key and then transmitted to the
streaming player as the packet containing the media key is
inserted in the multicast streaming channel.

• Channel key (CK)
The channel key is assigned to each broadcast channel and

used to encrypt the media keys. The channel key is encrypted
under the corresponding package key and then transmitted to
the streaming player as the packet containing the channel key is
inserted in the multicast streaming channel.

• Package key (PK)
The package key is assigned to each package that consists of

a number of channels and is used to encrypt the channel keys.

ETRI Journal, Volume 27, Number 5, October 2005 Seong Oun Hwang et al. 599

The package key serves as an access control to a package, that
is, a set of channels belonging to a particular package. The
package key is encrypted under the receiving STB secret key
and then transmitted to the streaming player through the unicast
key transport channel when a new user subscribes to a service
or when the existing package key expires.

• STB secret key (SK)
The STB secret key is used to encrypt information, for

example, a package key that should be transmitted securely to
each individual set-top box. Currently, we use a symmetric key
scheme as the STB secret key considering the limited
performance of a set-top box. The STB secret key is generated
when DRM modules are installed on a set-top box. To achieve
a higher security level of key transmission, a public key
mechanism such as RSA [25] can be deployed without much
modification to the proposed architecture.

• Broadcast key (BK)
The broadcast key is used to encrypt information, for

example, rekeying a message that should be transmitted to all
the users.

4. Service Scenario for MPEG-2 Multicasting Streaming
Service

Figure 3 shows the configuration of functional actors. Before
servicing users, a content service provider registers the original
content to the content portal where a user can browse and select
their own content. The original content itself is registered to the
streaming server. The streaming server sends multicast streams
to the DRM multicaster. The DRM multicaster encrypts
incoming streams real-time using keys provided from the KMS
and sends encrypted multicast streams to the outside multicast
addresses. The KMS provides keys (package/channel keys) to
the DRM multicaster and manages the user’s package key. To
obtain service, a user should subscribe to a particular package
that is a set of channels. Note that the content portal consists of a
multicast service server and subscriber management server,

Package key update

Fig. 3. Configuration of functional actors.

Streaming
server

Content
portal

DRM
multicaster

Web
browser

Streaming
player

STB

Channel/package key

Web browsing

Encrypted
streaming content

DRM I/F

Unpackager
Key

management
server

Content registration

Streaming content

Fig. 4. Process flow in MPEG-2 multicast streaming service.

DRM
multicaster

Multicast
service
server

Multicast
streaming

server
Subscriber

① Connection

③ Service menu

④ Channel selection

⑦ Multicast group IP, current package key ID of
channel, channel ID, KMS IP

⑨ Join a channel (IGMP, …)

⑩ Streaming request

② Subscriber authentication

Subscriber
management

server

Key
management

server

a. Channel-group IP

b. Realtime encryption
c. Streaming

(Channel key update)

⑪ Multicast streaming

⑥ Fetch the current package key ID of channel

⑤ Rights authorization

⑧ Validation of package key

Key request / STB secret key, channel ID

Package key issuance

No package key or different version

which are shown in Fig. 4.

The following outlines the process flow in our MPEG-2
multicast streaming service scenario, as illustrated in Fig. 4.

① Service connection
If a user turns on the STB and logs on to the multicast

service server, the STB displays the initial service menu.

② Subscriber authentication
A user logs on to a multicast service using his/her user-id and

password. The multicast service server authenticates the user
by consulting the subscriber’s information (for example, usage
history, payment status, and so on) from the subscriber
management server.

③ Service menu
After the user’s authentication is finished, the multicast

service server transmits a service menu to the user.

④ Channel selection
A user selects a broadcasting channel from the channel list

displayed on a TV set connected to the STB.

⑤ Rights authorization
The multicast service server checks with the subscriber

management server to see that the requesting user already
subscribed to the corresponding service.

⑥ Fetch the current package key ID of the channel
The multicast service server receives the current package key

ID of the channel from the key management server.

600 Seong Oun Hwang et al. ETRI Journal, Volume 27, Number 5, October 2005

⑦ Multicast group-IP, current package key ID of the channel,
channel ID, and KMS IP

The multicast service server receives a multicast group-IP
from a middleware subsystem of the streaming system. The
multicast service server transmits information such as a
multicast group-IP, current package key ID of the channel,
channel ID, and KMS IP address to the user.

⑧ Validation of package key
A streaming player checks whether the package key stored

on the STB is valid by comparing its version with the version
of the package key that was received from multicast service
server. If those two versions are different, the existing package
key on the STB is determined to no longer be valid. In case the
package key is not valid or there is no package key, a streaming
player requests the issuing of a new package key by sending an
STB secret key and package ID through the unicast key
transport channel. The key management server generates a new
package key and sends it encrypted under the receiving STB
secret key through the unicast key transport channel. A
streaming player receives it, decrypts it using its secret key, and
keeps it on a secure DB, a tamper-resistant secure storage space
in the STB.

⑨ Join a channel
A streaming player requests a join operation to the

corresponding channel.

⑩ Streaming request
A streaming player requests a stream from the streaming

server.

⑪ Multicast streaming
A streaming server starts multicast streaming.

5. Key Update Process

Figure 5 outlines the key update process flow in our MPEG-
2 multicast streaming service scenario. As we mentioned earlier,
key packets such as channel keys and media keys are
transmitted to the set-top box’s side along the multicast media
channel. Although package keys are updated through a
separate key channel (for example, when a new user joins a
service or when an existing package key expires), channel keys
and media keys are updated through the multicast media
channel. Therefore, there exist different versions of channel
keys on the channel: one is a currently valid key and the other
is a key that will be used when the current valid key expires.
Therefore, a key synchronization problem of identifying the
current key might happen. To solve the problem, we use the
current key – next key scheme : The DRM multicaster sends
key packets where the currently valid key version is set to the

current key field, and the key to be used on the next time slot is
set to the next key field. Upon receiving these packets, a set-top
box retrieves key information and sets its current, next key field
on the memory. When receiving a key update signal (related to
this, refer to section III.2, unpackaging), a set-top box sets its
current key field to its next key field value, and the next key
field to the current key value retrieved from incoming key
packets.

① Request package key information
The DRM information processing block requests package

key information such as package key identifier and package
key version to the package key processing block.

② Package key information
Upon request of package key information, the package key

processing block gets it from the secure DB.

③ Check package key
After being received from the secure DB, the package key

processing block checks the validity of the package key. In case
there is no key, old key, or key update, proceed with steps ④
through ⑧. In case there is a valid package key, proceed with
steps ⑧ through ⑨.

④ Request key
The package key processing block requests a package key

from the key management server by sending a package key
identifier, channel identifier, and STB secret key.

⑤ Transmit key
The key management server returns (package key version,

package key encrypted under STB secret key) back to the
package key processing block.

Fig. 5. Process flow in key update.

Key
management

server

① Request package key info (PK_ID, PK_Ver)

③ Check package key

④ Request key (PK_ID, Ch_ID, SUV)

⑦ Store key (PK, PK_ID, PK_Ver)

Secure DB

⑥ Retrieve package key (PK)

⑤ Transmit key (PK_ID, PK_Ver, [PK]SUV)

② Package key info (PK_ID, PK_Ver)

⑧ Transmit key (PK)

⑨ Decrypt content

- When there is no appropriate key or key update (4-8)
- When appropriate keys exist (8-9)

DRM info
processing

block

Package key
processing

block

Decryption
processing

block

ETRI Journal, Volume 27, Number 5, October 2005 Seong Oun Hwang et al. 601

⑥ Retrieve package key
The package key processing block retrieves a package key

by decrypting the transmitted package key using the STB
secret key.

⑦ Store key
The package key processing block stores the package key

information such as package key and its version at a secure DB.

⑧ Transmit key
The package key processing block sends the package key to

the decryption block.

⑨ Decrypt content
The decryption block first decrypts the channel key using the

package key. Using the channel key, the decryption block then
decrypts the media key that was actually used to decrypt the
encrypted media packet.

III. System Details

This section covers details regarding the packaging toolkit
and unpackaging toolkit. The packaging is done on the server’s
side and unpackaging on the client’s side. The packaging
toolkit largely consists of DRM multicaster and key
management server. The unpackaging toolkit consists of DRM
client and secure DB. Each module was implemented based on
the design principles and architecture introduced in section II.

1. Packaging

The packaging toolkit receives multicast packets from
streaming servers or other multicasting modules, encrypts TS
packets, and sends them to a user group. The packaging toolkit
consists of the following modules shown in Fig. 6.

• Multicast (UDP) packet receiving block
It stores payloads (TS packet) of the received packets in the

buffer.

• Multicast (UDP) packet sending block
It reads TS packets from the buffer and sends them as

multicast packets to the destination IP address of the channel’s
group.

• Middleware communication block
It requests and receives the group IP information of the

corresponding channel. The group IP information is sent to the
multicast packet sending block.

• Key management server communication block
It requests/receives channel keys and package keys of the

corresponding channel to/from the key management server. It
also keeps information such as channel, channel keys, and
package keys. Those keys are sent to the real-time encryption
block.

• Key period setting block
It provides a user interface for
- setting the update period of channel keys and
- setting how often the channel keys should be sent.
According to these settings, it sends an event request of the

keys update to the key management server.

• Real-time encryption block
It reads TS packets from the receiving buffer, encrypts and
writes them on the sending buffer.

Encryption Procedure

Step 1) The real-time encryption block obtains a channel
key and a package key, and encrypts the channel key with the

Fig. 6. Packaging process.

Middleware
comm block

Middleware

S/W
multicasting

module

Streaming server

H/W realtime
encoding
module

H/W encoder/multicast equipment

H/W
multicasting

module

Streaming
module

DRM multicaster

Multicast
packet

Channel key/
package key

User
group

Internal group
multicast packet

Channel-Internal group
IP information

Channel-Group-IP Info

Key period

KMS comm..
block

Key
management

server

UDP packet
receiving block

UDP packet
sending block

Real-time
encryption

block

Channel key/
package key

Channel-Group IP

Key period
setting block

602 Seong Oun Hwang et al. ETRI Journal, Volume 27, Number 5, October 2005

package key.
Step 2) It reads in TS packets from the receiving buffer in

order. It reads on until a program association table (PAT) TS
packet whose PID is ‘0’ appears. Packets located before the
PAT are bypassed to the multicast packet sending block.

Step 3) After analyzing the PAT, it retrieves the program
map table’s (PMT) PID and writes the PAT packet to a sending
buffer.

Step 4) It reads in TS packets from the receiving buffer
until a TS packet whose PID equals the PMT’s PID appears.
Packets read before the PMT are bypassed to the multicast
packet sending block.

Step 5) It analyzes the PMT packet and obtains both the
PIDs of video packets and audio packets, respectively.

Step 6) It inserts new DRM descriptors as shown in Table
1 into the description area of the PMT and writes the packets
on the sending buffer. Descriptors are used to describe
information about programs and elements that constitute
programs. Table 1 shows DRM descriptors to be added within
the structure of the PMT. Three new descriptors such as
MEK_descriptor, CK_Update_descriptor, and
PK_Update_descriptor are inserted into the original PMT.

Step 7) It generates key packets containing key information,
that is, media keys encrypted under channel keys, and channel
keys encrypted under the package key, and writes them to the
sending buffer (key packet insertion). Generated key packets
include MEK for the media key, as shown in Table 2,
CK_Update for the channel key, as shown in Table 3, and
PK_Update for the package key, as shown in Table 4.

Step 8) It reads packets at the receiving buffer. If the
packet’s PID equals a video PID or audio PID, it performs an
encryption. Otherwise, it is bypassed to the sending buffer.

8-1) Encryption is done on the TS packet payload, that is, the
TS packet header is excluded from encryption.

8-2) It sets the scrambling control bit of the encrypted TS
packet to ‘11’.

Step 9) If the packet’s PID is ‘0’, that is, the packet is a PAT,
we repeat steps 2 through 8. The reason we analyze the PAT
and PMT again is because if a program is changed (updated),
its PAT and PMT information are changed.

The encryption algorithm is AES-ECB (key: 128 bits, data
block: 128 bits) and the encryption option supported is as
follows:

- video stream encryption
- audio stream encryption
- video key frame encryption

Audio Packet Encryption Procedure

Step 1) The real-time encryption block reads in a TS packet.

Table 1. PMT structure.

Syntax Description
MEK_descriptor()

CK_Update_descriptor()
PK_Update_descriptor()

Media key
Channel key
Package key

Table 2. The structure of MEK packet.

Syntax Description
table_id
section_syntax_indicator
private_indicator
reserved
private_section_length
CK_version
current_MEK
next_MEK
enc_size

0x90 or 0x91
‘0’
‘0’
‘0’
49 (byte)
current CK version
current MEK encrypted under CK
next MEK encrypted under CK
encryption size within a packet

Table 3. The structure of CK_Update packet.

Syntax Description
table_id
section_syntax_indicator
private_indicator
reserved
private_section_length
PID
current_CK_version
content_CK
next_CK_version
next_CK

0x92 or 0x93
‘0’
‘0’
‘0’
64 (byte)
package ID
current_CK version
current CK encrypted under PK
next CK version
next CK encrypted under PK

Table 4. The structure of PK_Update packet.

Syntax Description
table_id
section_syntax_indicator
private_indicator
reserved
private_section_length
PID
next_PK_version

0x94
‘0’
‘0’
‘0’
32 (byte)
package ID
next PK version

 Step 2) It calculates the starting point of the packet’s payload.
To reduce the time it takes to calculate the header length during
decryption, TS packets containing a PES packet header are
excluded from encryption.

Step 3) It checks whether the audio frame header exists.
3-1) If it exists, the packet is sent to the output without

encryption.

ETRI Journal, Volume 27, Number 5, October 2005 Seong Oun Hwang et al. 603

3-2) If it doesn’t exist, proceed to the next step.
Step 4) Encryption starts where the payload of the TS packet

begins. It sets the scrambling-control bit to ‘11’.
Step 5) It checks whether there exist encrypted byte streams

that are the same with the audio frame header.
5-1) If they exist, encryption is cancelled and the original

packet is sent to the output.
5-2) If they don’t exist, the encrypted packet is sent to the

output.

Video Packet Encryption Procedure

Step 1) The real-time encryption block reads in a TS packet.
Step 2) It calculates the starting point of the packet’s payload.
Step 3) It checks whether the video frame header exists.
3-1) If a video frame header exists and the option is key-

frame-only encryption, the packet with a picture start
code is sent to the output without encryption.

3-2) If a video frame header does not exist, and a PES header
exists in step 2, the packet is sent to the output without
encryption.

3-3) If neither a video frame header nor PES header exists,
proceed to the next step.

Step 4) Encryption starts where the payload of the TS packet
begins. It sets the scrambling-control bit to ‘11’.

Step 5) It checks whether there exist encrypted byte streams
that are the same with the video frame header.

5-1) If they exist, encryption is cancelled and the original
packet is sent to the output.

5-2) If they don’t exist, the encrypted packet is sent to the
output.

Note that we do not encrypt the whole payload of the TS
packets. TS packets containing video (audio) sequence headers
are excluded from encryption because streaming servers
usually use them to support trick play functions such as fast-
forward and rewind. When encrypted byte streams appear
whose byte codes equal the video or audio sequence header,
encryption is cancelled and the encrypted byte streams are
replaced by the original byte streams.

Table 5 shows encryption options supported by the proposed
system. When video I-frame-only encryption is selected
among the encryption options, it checks whether a video frame
header is an I-frame and retrieves TS packets within the I-
frame. When encryption within a TS packet is selected, it only
encrypts data of specific size within a payload of a TS packet.
Our selective encryption is different from the MPEG-4 IPMP
Extension specification [5]: The specification of our selective
encryption deals with whether or not a specific part of a
payload is encrypted, while MPEG-4 IPMP Extension
selective encryption usually deals with whether or not specific

bit stream syntax elements (motion vectors, DCT, audio
codewords, and so on) are encrypted. Our selective encryption
is similar to ISMACryp selective encryption that deals with
whether or not a sample is encrypted. The reason behind why
we chose our selective encryption is that if we chose IPMP
Extension selective encryption, we should make additional
modifications on the decoders that are usually implemented in
HW in set-top boxes, which contradicts our design principle,
that is, support of DRM independent of existing streaming
systems without major modifications. Readers who are more
interested in other selective encryption schemes should refer to
survey paper [26]. According to the packet skip count, it
selectively skips the encryption of packets. If the packet skip
count is set to 5, it encrypts every 5th packet among all the
input packets.

Table 5. Encryption options.

Options Description

Media type
- video-only encryption
- audio-only encryption
- video/audio encryption

Video frame selection
- I-frame-only encryption
- Entire frame encryption

Encryption size within
TS packet

- 16 to 128 bytes within a payload of
a TS packet

Packet skip count The ratio of packets to be encrypted
among incoming packets

• Key management server (KMS)
The KMS generates keys and updates them periodically or

upon requests from the DRM multicaster. It also receives
package key requests from and sends them to the package
key processing block. It keeps the following key
information:

- channel ID, channel key, effective period of channel key
- package ID, package key, effective period of channel key,

the list of the channel IDs comprising the package.

2. Unpackaging

The Unpackaging toolkit consists of the following modules
as shown in Fig. 7

• DRM information processing block
The DRM information processing block receives target

channel information such as multicast IP, package ID, channel
ID, and KMS IP and transfers the data to its corresponding
processing block. It also requests a join operation to the target
(or corresponding) service using a multicast group IP.

604 Seong Oun Hwang et al. ETRI Journal, Volume 27, Number 5, October 2005

Fig. 7. Unpackaging process.

Decryption
block

Streaming
packet

Client

Package key,
package key version

Package key

Multicast group IP,
package ID,
channel ID,
KMS IP

Audio/Video packet

PSI packet…

Decoder

Secure
DB

Package
key info

Key
management

server

DRM Info
processing

block

Package key
processing

block

• Package key processing block
Using the package ID received from DRM information

processing block, the package key processing block checks the
version information of the package key stored in the secure DB.
If those two versions are equal (or identical), it obtains the
package key from the secure DB and sends it to the decryption
block. If they are not equal, it requests a package key from the
key management server, using the KMS IP that was received
from the DRM information processing block. When requesting a
packaging key from the KMS, it uses information such as
package ID, channel ID, and STB secret key. An STB secret key
is used to identify an STB to the KMS and to set up a secure key
transport channel between the KMS and STB secure DB.

• Secure DB
The Secure DB is a secure storage area within a set-top box.

The secure DB manager generates an STB secret key (AES-
128 bit) and registers it with KMS as well as keeping it on a
secure DB. A package key is transferred to an STB under
encryption via a set-top box’s secret key. Using the STB secret
key, the secure DB manager decrypts the package key that was
originally encrypted with the STB secret key, stores the
decrypted package key at the secure DB, and sends it to the
decryption block.

• Decryption block
The decryption block analyzes the program specific

information (PSI) and decrypts video and audio packets using
channel keys.

Decryption Procedure

Step 1) The decryption block reads in TS packets
continuously from the receiving buffer until a TS packet whose
program ID (PID) is ‘0’ (that is, PAT) appears. Packets read
before the PMT are bypassed to the decoder (or decoder’s
buffer).

Step 2) It analyzes the PAT packet and obtains the PID of the
PMT packet.

Step 3) It reads in TS packets continuously from the
receiving buffer until a packet appears whose PID equals the
PMT’s PID. Packets read before the PMT are bypassed to the
decoder (decoder’s buffer).

Step 4) It analyzes the PMT packet and obtains a video PID
and an audio PID. It also analyzes the DRM descriptor and
obtains the PID of the packet that contains channel key
information.

Step 5) It reads in TS packets continuously from the
receiving buffer until a packet appears whose PID equals the
key packet’s PID. Packets read before the key packet is
bypassed to the decoder.

Step 6) It retrieves the channel key by decrypting the
received channel key under the package key. The channel key
exists only on the memory of the STB and is accessible from
the decryption block.

Step 7) It reads in packets from the receiving buffer. If its
PID equals a video PID or audio PID, encryption is done using
the media key that is obtained by decrypting under the channel
key. In the case of a video (or audio) packet, it checks the
scrambling-control bit. If it is ‘11’, decryption is done and the
decrypted data are sent to the decoder. Otherwise, it is bypassed
to the decoder without decryption.

Step 8) In the case where PID is ‘0’, we repeat steps 2
through 7.

In step 6, the current key of a set-top box becomes obsolete,

and the next key of a set-top box becomes the current key by
which decryption is done. The next key of a set-top box are
replaced by the current key that was retrieved from a new key
packet. In our implementation, a set-top box does not need to
retrieve all the key packets to check whether key updates
happen. To signal that a key update event happened, our DRM
multicaster uses two key packet ids alternately: 0x90, 0x91 for
media keys, and 0x92, 0x93 for channel keys. Therefore, when
the key packet id kept in a set-top box is ‘90’ and the incoming
key packet id is ‘91’, it indicates that a media key update has
happened, so the set-top box retrieves keys from the key packet
and updates media keys.

IV. Analysis

This section analyzed how the proposed system achieved the
goals that were set forth in section II. Based on the above
modules, we constructed a demonstration site that consisted of
a streaming server, a DRM multicaster, key management
server, two set-top boxes, and web server as shown in Fig. 8.

Two set-top boxes are connected to two separate subnets that

ETRI Journal, Volume 27, Number 5, October 2005 Seong Oun Hwang et al. 605

are also connected to a servers’ network via a multicast-
supporting router. Through this demonstration system, we first
confirmed that the system worked well as integrated with an
existing streaming server called CasterNets without any major
modification to it. In a security point of view, the proposed
system achieved the security requirements set before: end-to-
end security and a periodic rekeying mechanism. Content is
only delivered to authorized users whose devices have
appropriate package keys, which will be used to restore the
channel keys and media keys. Users who don’t belong to a
specific package group, and therefore don’t get a package key,
cannot decrypt the received streaming content even when they
can access them. We also control the security level of the
proposed system by supporting a secure key update
mechanism based on the current key-next key scheme.

We also got some performance data as shown in Tables 6
and Figures 10, 11: a comparison of the level of encryption
according to various encryption options, the multicaster’s
performance, and overhead on the set-top box’s side. Table 6

Fig. 8. Configuration of a demo site.

Streaming server

STB 2

Multicast-supporting routerHub

STB 1

DRM
multicaster

Hub

Table 6. Encrypted results.

Video Packet skip count
 Audio

All-frame I-frame audio video
Payload

encryption size

(a) X X X X X X

(b) X O X 10 32 byte

(c) O O 5 5 64 byte

(d) O O 0 0 128 byte

shows that as the packet skip count decreases and the encryption
size within the TS packet increases, the resulted encrypted
streams become less recognizable. Figure 9 shows a screenshot
of the original and encrypted streams described in Table 6.

Figure 10 shows how a DRM multicaster works as the
number of channels increases. The system specification of the
multicaster is as follows: CPU (Pentium IV 2.0 GHz), Memory
(512 M), and NIC (100 M) on Windows 2003 Server. As
sample content, we used 4 Mbps MPEG-2 TS contents. In Fig.
10, when there are zero channels, the usage (occupancy) rates
each denote the basic CPU and networking rates. According to
our experiment, we expect that when using a generic PC as a
DRM multicaster, we can provide a stable multicast service on
up to 10 channels.

Figure 11 shows the distribution of packet decryption times
of 4 Mbps streaming content on the set-top’s side. The system
specification of the set-top box is VIA C3 800 MHz and 128 MB
of memory. The encryption option is all audio/video frame
encryption with packet skip count = 0. From Fig. 11, we find

Fig. 9. Encrypted results.

(a) Original content (b) Low-level encryption

(c) Medium-level encryption (d) High-level encryption

Fig. 10. The usages of CPU and networking.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

No. of channels

U
sa

ge
 (%

)

CPU usage (Maximum)

Networking usage (Maximum)

606 Seong Oun Hwang et al. ETRI Journal, Volume 27, Number 5, October 2005

Fig. 11. Distribution of packet decryption time.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 51 101 151 201 251 301 351 401 451

Time progress

D
ec

ry
pt

io
n

tim
e

of
 4

 M
b

pa
ck

et
 (s

)

that the time to decrypt takes less than 0.1 seconds when
processing 4 Mb during one second. Considering that the time
to decode (play) is 0.2 seconds, we use only 0.3 seconds per
one second. As the CPU on the set-top box is in an idle state
during the remaining 0.7 seconds, real time performance
during the unpackaging process is guaranteed.

From our performance testing, we confirmed that no
degradation of performance or display quality occurred on the
client’s side.

 We conclude the analysis section by addressing the
scalability issues, comparing our scheme with another scheme
[20], [21]: The total key update time increases linearly as the
number of users N increases in the other scheme, whereas in
our scheme it takes O(1) due to our key packet insertion
scheme. However, we also observed that our key packet
insertion scheme increased the total streaming data size by
0.003 % per second because of the inserted key packets. We
note that the size of the inserted key packets relates to channel
switching, but not to the number of users. The amount of key
material transmitted during the rekey process takes O(N) in the
other scheme. However, it takes O(PN) in ours, where PN (<<
N) is the number of packages that streaming service providers
can determine freely according to their service policies and
strategies.

V. Conclusion

In this paper, a new multicasting DRM system has been
proposed. The distinctive feature of the proposed system is that
it supports transparent and scalable DRM multicasting service
in a large-scale user environment. To achieve these features, we
introduced a selective encryption scheme that allows us to
control the encryption overhead on the client’s side. We
deployed a key packet insertion scheme to transport keys to
large-scale user groups securely and efficiently. A hierarchical
key management scheme was also introduced to reduce key
update overhead caused by periodic key updates. To check

whether the system works as designed and analyze the
proposed system, we built a real DRM multicast streaming
service environment. We confirmed the following: the key
transport process and key update process worked well, and
encrypted multicast streams are unpackaged on the client’s side
without any delay or degradation of quality. To estimate how
many channels our DRM multicaster supports, we monitored
the CPU and network usage rates as the number of channels
increased. Our experiment results suggest that our DRM
multicaster can provide a stable multicast service up to 10
channels. To increase the number of channels and decrease the
CPU usage rate, we plan to increase NIC from one to two or
more. We also plan to migrate our DRM multicaster platform
from Windows 2003 to a more network-optimized platform
(for example, FreeBSD) to improve the performance of the
DRM multicaster. Furthermore, the distribution of packet
decryption times of 4 Mbps streaming content on the set-top
box’s side shows that real-time performance during the
unpackaging process is guaranteed.

References

[1] IMPRIMATUR Business Model, Version 2.1, June 1999.
[2] S. Hwang, J. Kim, K. Yoon, and M. Kim, “Trends of MPEG-21

IPMP Standardization,” Electronics and Telecommunications
Trends, vol. 17, no. 4, Aug. 2002, pp. 51-64.

[3] ISO/IEC JTC1/ SC29/WG11 MPEG/N 3939, Information
Technology — Multimedia Framework (MPEG-21) — Part 1:
Vision, Technologies and Strategy, Jan. 2001.

[4] ISO/IEC 21000-4, Information Technology – Coding of Moving
Pictures and Audio: Intellectual Property Management and
Protection in MPEG Standards, 2001.

[5] ISO/IEC 14496-1:2001/FDAM 3:2003(E), SC 29/WG11 W5282,
Information Technology – Coding of Audio-Visual Objects – Part
1: Systems, AMENDMENT 3: Intellectual Property Management
and Protection (IPMP), Extensions, Dec. 2002.

[6] ISO/IEC 13818-1:2000/FDAM 2:2003(E), SC 29/WG11 W5604,
Information Technology – Generic Coding of Moving Pictures
and Associated Audio Information – Part 1: Systems,
AMENDMENT 2: Support of IPMP on MPEG-2 Systems, Apr.
2003.

[7] OMA, Http://www.openmobilealliance.org.
[8] DMP, Http://www.dmpf.org.
[9] S. Hwang, K. Yoon, K. Jun, and K. Lee, “Modeling and

Implementation of Digital Rights,” J. of Systems and Software,
vol. 73, no. 3, Nov. 2004, pp. 533-549.

[10] S. Hwang, K. Yoon, and K. Lee, “A Modeling of Multilevel
DRM,” IEICE Trans. on Comm., vol. E88-B, no. 5, May 2005, pp.
2168-2170.

[11] J. Park, R. Sandhu, and J. Schifalacqua, “Security Architectures for

ETRI Journal, Volume 27, Number 5, October 2005 Seong Oun Hwang et al. 607

Controlled Digital Information Dissemination,” Proc. of the 16th
Annual Computer Security Applications Conf. (ACSAC), Dec.
2000, pp. 224-233.

[12] B. Rosenblatt, B. Trippe, and S. Mooney, Digital Rights
Management – Business and Technology, M&T Books, 2002.

[13] J. Lee, S. Hwang, S. Jeong, K. Yoon, C. Park, and J. Ryou, “A
DRM Framework for Distributing Digital Contents through the
Internet,” ETRI J., vol. 25, no. 6, Dec. 2003, pp. 423-436.

[14] Y. Jeong, K. Yoon, and J. Ryou, “A Trusted Key Management
Scheme for Digital Rights Management,” ETRI J., vol. 27, no. 1,
Feb. 2005, pp. 114-117.

[15] ISMA, Internet Streaming Media Alliance Encryption and
Authentication Specification Version 1.0., Feb. 2004.

[16] ISMA, Internet Streaming Media Alliance Implementation
Specification Version 1.0., Aug. 2001.

[17] Microsoft, Http://www.microsoft.com.
[18] Widevine, Http://www.widevine.com.
[19] Verimatrix, Http://www.verimatrix.com.
[20] Coretrust, Http://www.coretrust.com.
[21] Sealtronix, Http://www.sealtronix.com.
[22] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A

Transport Protocol for Real-Time Applications,” July 2003.
[23] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming

Protocol (RTSP),” Apr. 1998.
[24] NIST, Advanced Encryption Standard (AES), NIST FIPS 197,

Http://csrc.nist.gov/publications/fips/fips197/fips197.pdf, Nov.
2001.

[25] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public Key Cryptosystems,” Comm. of the
ACM, Feb. 1978, pp. 120-126.

[26] Xiliang Liu and A. Eskicioglu, “Selective Encryption of
Multimedia Content in Distribution Networks: Challenges and
New Directions,” Proc. of the 2nd IASTED Int’l Conf. on Comm.,
Internet, and Info. Technology (CIIT 2003), Nov. 2003.

Seong Oun Hwang received the BS degree in
mathematics in 1993 from Seoul National
University, the MS degree in computer and
communications engineering in 1998 from
Pohang University of Science and Technology,
and the PhD degree in computer science in
2004 from Korea Advanced Institute of Science

and Technology, all in Korea. He worked as a Software Engineer at
LG-CNS Systems, Inc., from 1994 to 1996. Since 1998, he has been
working as a Senior Member of Engineering Staff at Electronics and
Telecommunications Research Institute (ETRI), Korea. His research
interests include cryptographic algorithms, protocols, and applications.

Jeong Hyon Kim received the BS and MS
degrees in computer science in 1999 from
Jeonnam National University, Korea, in 1999
and 2001. Since 2001, she has been working as
a Member of Engineering Staff at ETRI. Her
research interests include image compression,
multimedia telecommunication and applications.

Do Won Nam received the BS degree in
computer science in 1995 from Korea
Advanced Institute of Science and Technology,
and the MS degree in computer and
communications engineering in 1998 from
Pohang University of Science and Technology.
He has been working as a Senior Member of

Engineering Staff at ETRI since 2001. His research interests include
algorithms and systems for digital rights management and data mining.

Ki Song Yoon received the BS degree in
shipbuilding engineering in 1984 from Pusan
National University, Pusan, Korea. He received
the MS and PhD degrees in computer
engineering from City University of New York,
USA, in 1988 and 1993. Since 1993, he has
been working as a Principal Member of

Engineering Staff at ETRI. His research interests include network
protocols and applications.

