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PARTIAL DIFFERENTIAL EQUATIONS AND SCALAR
CURVATURES ON SPACE-TIMES

YooN-TAE JUNG, BYOUNG-SOON JEONG AND EUN-HEE CHOI

Abstract. In this paper, when N is a compact Riemannian mani-
fold, we discuss the method of using warped products to construct
Lorentzian metrics on M = [a,b) x; N with specific scalar curva-

tures

1. Introduction

In recent studies ([10, 11]), M.C. Leung have studied the problem
of scalar curvature functions on Riemannian warped product manifolds
and obtained partial results about the existence and nonexistence of
Riemannian warped metrics with some prescribed scalar curvature func-
tions. In this paper, we study also the existence and nonexistence of
Lorentzian warped metric with prescribed scalar curvature functions on
some Lorentzian warped product manifolds.

By the results of Kazdan and Warner ({7, 8, 9]), if N is a compact
Riemannian n—manifold without boundary, n > 3, then N belongs to

one of the following three catagories:

(A) A smooth function on N is the scalar curvature of some Rie-

mannian metric on N if and only if the function is negative somewhere.
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(B) A Smooth function on N is the scalar curvature of some Rie-
mannian metric on N if and only if the function is either identically
zero or strictly negative somewhere.

(C) Any smooth function on N is the scalar curvature of some Rie-

mannian metric on N.

This completely answers the question of which smooth functions are
scalar curvatures of Riemannian metrics on a compact manifold N.

In [3, 10, 11], the authors considered the scalar curvature of some
Riemannian warped product and its conformal deformation of warped
product metric. And also in [4], the authors considered the existence of
a nonconstant warping function on a Lorentzian warped product man-
ifold such that the resulting warped product metric produces the con-
stant scalar curvature when the fiber manifold has the constant scalar
curvature.

In [5], the author considered the existence of a warping function on
a Lorentzian warped product manifold M = [a,00) x¢ N. Similarly in
[6], the authors also considered the existence of a warping funtion on
M = (—00,00) s N. In this paper, when N is a compact Riemannian
manifold, we consider the null future completeness of Lorentzian metrics
on M = [a,b) x; N with specific scalar curvatures, where a and b are
positive constants. When the base manifold is a finite interval, the
results about the existence of a warping function are different from those
of [5] and [6], in which cases the base manifolds are infinite intervals. It
is shown that if the fiber manifold N belongs to (A), (B) or (C), then
M admits a Lorentzian metric with some prescribed scalar curvature

outside a compact set.

2. Fiber manifold in class (A) or (B)

Let (N,g) be a Riemannian manifold of dimension n and let f :

[a,b) — R be a smooth function, where a and b are positive numbers.
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The Lorentzian warped product of N and [a,b) with warping function
f is defined to be the product manifold ([a,b) x ¢ N, g') with

(2.1) g = —dt’ + f2(t)g

Let R(g) be the scalar curvature of (N, g). Then the scalar curvature

R(t,z) of ¢ is given by the equation

(22)  R(tz)= ?Z,l(—t){R(g)(iE) +2nf (1) f"(8) + n(n = DI (O}
for t € [a,b) and z € N. (For details, cf. [5] or [6])

If we denote

ut) = fE (), b>t>a,

then equation (2.2) can be changed into

4n

(23) n+1

4"(t) — R(t, z)u(t) + R(g)(z)u(t)' =1 =0.

In this paper, we assume that the fiber manifold N is nonempty,
connected and a compact Riemannian n—manifold without boundary.
For n > 3, let M = [a,b) x; N be the Lorentzian warped product
(n + 1)-manifold with N compact n-manifold. Trivially, since the base
manifold is a finite interval, then for any warping function the resulting
warped product metric is a future timelike geodesically incomplete one
([1], [2])- But for the null geodesical completeness we have the following

proposition.

Prposition 2.1 ([12]) All null geodesics are future complete on
la,b) x sty N if and only if ftl; f{t)dt = +oo for some tg € [a,b).
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If N admits a Riemannian metric of negative or zero scalar curvature,
i.e., N is in class (A) or (B), then we let u(t) = (b —¢)* in (2.3), where
a € (0,1) is a constant, and we have

4
R(t,z)g-—n—na(l—a) <0, b>t>a.

i =y

Theorem 2.2 For n > 3, let M = [a,b) x5 N be the Lorentzian
warped product (n + 1)-manifold with N compact n-manifold. Suppose
that N is in class (A) or (B), then on M there exists a Lorentzian metric

of negative scalar curvature outside a compact set.

We note that the term a(1 — a) achieves its maximum when a = 3.

And when u = (b— t)% and N admits a Riemannian metric of zero scalar

curvature, we have

41 1
T on414(0b-1)2
If R(t,z) is the function of only t-variable, then we have the following

b>t>a.

proposition whose proof is smilar to that of Lemma 1.8 in [11].

Proposition 2.3 If R(g) = 0, then there is no positive solution to
equation (2.8) with

dn ¢ 1
<
R(t) < n+14(b—1t)?

where ¢ > 1 and tg > a are constants.

for &>t > tg,

Proof. Assume that

4n ¢ 1
RH)< ——— -~
()= n+14(b-t)?

with ¢ > 1. Equations (2.3) gives (b — t)%u” + $u < 0. Let u(t) =
(b—t)v(t), t > ty, where a > 0 is a constant and v(t) > 0 is a smooth

for ¢t > to,

function. Then we have
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o = a(a— 1)(b— )" 20(t) - 2a(b = 771 (1) + (b= V" (1),

And we obtain

(2.4) (b—t)*v(t)[a(a—1)+ E] —2a(b—t)* T/ (t) + (b—t)*+ %" (t) < 0.
Let 6 be a positive constant such that §2 = %. Then we have

c 12 c¢-1
— —— - - >2.
ala 1)-!—4 (a 2)+ 1 > 6

Here § is a constant independent on a. Equation (2.4) gives

(2.5) —2a(b— t)v'(t) + (b—t)%0"(t) < —86%v(t).

Let # = 2a and we choose a > 0 such that g > 1, that is, a > %
Then (2.5) becomes

1o/ 52U(t)
((b— t)ﬁv (t)) < —m.

Upon integration we have

(2.6) (b—t)Pu!(t)—(b—7)Pv' (1) < — /t %ds, b>t>T1>t.

Here we have two following cases:

i) If v/(7) < 0 for some 7 > to, then (2.6) implies that (b —¢t)Pv/(t) <

—C for some positive constant C. We have

! c(b - s)t=P
o) <o) - [ - Empds = o(r) + L o

as t — b. Hence v(t) < 0 for some ¢, contradicting that v(t) > 0 for all
t € [a,b)

ii) We have v'(t) > 0 for all ¢ > to. Equation (2.6) implies that
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b §2u(s)
- () - | —=Lds>
(b— 1) (1) /T (b..s)2—ﬁds—0
for all t > 7 > tg. As v/(t) > 0 for all £ > to, we have

t 2 2
(b— T)ﬁvl(T) > U(T)/T (b—_és—)—z_—ﬁds = ’U('r)[(b — i)l 5 ] B”t

Letting t — b, we have (b—7)%v/(1) > (7%,3 7- Or after changing

the parameter, we have 1;/((;)) B_Lﬁé_ t > to.

Choosing a> 5 L close to 2 3 so that 8 > 1 is close to 1 and using the

(( )) > 15 for a big integer
N > 2. This gives v(t) > C(b — t) , t > to, where C is a positive
constant. (2.6) implies that

)—N

p p LC& (b s
(b— )P/ (t) < (b—7)P(7) —/T N

)2ﬂ ds — —o0 as t— b

Thus v/(t) < 0 for ¢t sufficiently close to b, which is also a contradic-

tion. Hence there is no solution to equation (2.3).

Theorem 2.4 Suppose that R(g) = 0 and R(t,z) = R(t) € C*([a,b)).
Assume that for t > tg > a, there ezist an upper solution u,(t) and a
lower solution u_(t) such that 0 < u_(t) < u4(t). Then there exists a
solution u(t) of equation (2.3) such that fort >ty 0<u_(t) <u(t) <

uy(t).

Proof. We need only to show that there exist an upper solution @ (t)
and a lower solution @_(t) such that for all ¢ € [a,b) @_(t) < @4(t).
Since R(t) € C*([a,b)), there exists a positive constant d such that

|R(t)] < 22:.d? for t € [a, to)].

Since A%’y (t) — R(H)u4 () < 22 (u) () + d?uy (1)), if we devide the

given interval {a, o] into small intervals {I;}}_,, then for each interval I;
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we have an upper solution uﬂ_(t) by parallel transporting cosdt such that
0 < ¢p < ui(t) < 1. That is to say, for each interval I;, n+1u+(t)“ -
R(t)ul (t) < n“fl(ui(t)” + d?u’, (t)) = 0, which means that v, (t) is an
upper solution for each interval I;. Then put 44 (t) = v’ (t) for t € I
and iy (t) = uy(¢) for t > tp, which is our desired (weak) upper solution
such that ¢ < @4 (t) < 1 for all t € [a,tg]. Put G4_(t) = coe™®* for
t € [a,to] and some large positive a, which will be determined later, and
@ (t) = u_(t) for t > to. Then, for t € [a,to], nHu” (t) — R(t)u—(t) >
An(y” (t) — dPu_(t)) = 2 coe™(a? — d?) > 0 for large a. Thus 4—(t)
is our desired (weak) lower solution such that for all ¢t € [a,b) 0 <

a_(t) < a4 (t).

Theorem 2.5 Suppose that R(g) = 0. Assume that R(t,z) = R(t) €
C*([a,b)) is a function such that

n ¢ 1 < R(t) < 4n d
n+14(b—1t)2 “n+l(b-t)

for t > to,

where tg > a,0 < c < 1,d > 0 and a > 0 are constants. Then equation
(2.3) has a positive solution on [a,b) and the resulting warped product

metric is a null geodesically incomplete one.

wh—n

Proof. Since R(g) = 0, put u4(t) = (b —t)2.
Then v/ (t) = 3 (b — t)%"Q. Hence

n+1
=n4_:'1—;11(b—t)“ R(t)(b 1)
= - i 0- 0 - TR
< o Rg+ )
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Therefore u4(t) is our upper solution. And put u_(t) = e=Pl-7F

where (3 is a positive constant and will be determined later and k is also
a positive constant such that k > "‘"2 _
Then u” (t) = e~ A1) [ﬁ2 k2 (b—t)"%%2 - Bk(k+1)(b—t)"F2].

Hence

HTI " (t) — R(t)u_(t)
_ 4+ 1 [82k2(b — )22 — Bk(k + 1)(b - £ k2] A=
— R(t) e P07
> n4.f1 07 822 (b — )22 _ Bh(k + 1)(b— £) "+
—d*(b—t)7%]
>0

for large 8 and as t — b. Since t > tg > a, we can take (3 large so
that u_(t) is a lower solution and 0 < u_(t) < u4(t). By Theorem 2.5,
equation (2.3) has a positive solution u(t) such that 0 < u_(¢t) < u(t) <
u4(t). And trivially Proposition 2.1 implies that the resulting warped

product metric is a null geodesically incomplete one.

Example 2.6 We consider the Lorentzian warped product manifold
with R(g) = 0 and R(t,z) = R(t) = n+1
Cauchy-Euler equation, then we have the following solutions of equation
(2.3):

u(t) = (b—1t) and ua(t) = (b—t

IfC> w, then the warped product manifold using the warp-

(—b—t)g If we use the technique of

1-V/1¥4C ) 1+v1F4C
2 2 .

ing function f(t) = ul(t)n%l is null future geodesically complete, but the
2

warped product manifold using the warping function f(t) = ug(t)=+7 is

null future geodesically incomplete. In the incomplete case, we get the

solution uz(t) by the result of Theorem 2.5, but in the complete case, we



Partial Differential Equations and Scalar Curvatures on Space-Times 281

could not have gotten the proper upper solution and the proper lower

solution.

3. Fiber manifold in class (C)

In this section, we assume that the fiber manifold N of M = [a,b) X
N belongs to class (C), where a,b are positive numbers. In this case,
N admits a Riemannian metric of positive scalar curvature. If we let

u(t) = (b —t)*, where a € (0,1) is a constant, then we have

1 4n 1 1
>

- ) <t<b
= Thtl b—02> nt1d4-t2 ° '

Since R(g) > 0, if R(t) < —f—_flgn_lt)—; for b >t > ty, then we

can induce that (b — t)?u” + $u < 0. So by a similar argument as in

Proposition 2.3, we have the following:

Theorem 3.1 If R(g) is positive, then there is no positive solution
to equation (2.3) with

in ¢ 1

Ri)<——2 ¢ 1 g b>t>t
<im0t

where ¢ > 1 and tg > a are constants.

If N belongs to (C), then any smooth function on N is the scalar

curvature of some Riemannian metric. So we can take a Riemannian

in k2

~+7k*, where k is a positive

metic ¢ on N with scalar curvature R(g) =

constant. Then equation (2.3) becomes

(3.1) A0 )+ 2 k)7 — R(, 2)u(t) = .

n+1 n+1
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Theorem 3.2 Suppose that R(g) = n‘lfle and R(t,z) = R(t) €
C>([a,b)). Assume that for t > tg, there exist an upper solution u, (t)
and a lower solution u_(t) of equation (8.1) such that 0 < u_(t) <
uy(t). Then there exists a solution u(t) of equation (3.1) such that for

t>t 0<u_(t) <u(t) <uyl(t).

Proof. The proof is similar to that of Theorem 2.3. Hence we also
have only to show that there exist an upper solution %4 (¢) and a lower
solution @_(t) such that for all t € [a,b) - (t) < @4 (t). Since R(t) €
C*([a, b)), there exists a positive constant d such that |R(t)| < n4—17-ll d?
for t € {a,tg]. We assume that uy(t) > 1 for t € [a,to]. Then we have

n  » 4in 1— -4
s a0 n—_Hk2u+(t) - R(t)u(t)
an n o n
< t
4n ”
= 7 [ () + (° + Pus ().

And if we devide the given interval [a,to] into small intervals {I;}2 ;,
then for each interval I; we have an upper solution u’ (t) by parallel
transporting cjcos(v'k? + d%t) such that uﬁr( ) > 1 for some constant

_4
c1. That is to say, for each interval I;, ;2% u (t) + A kP (¢) TR -

R(t), (t) < 2% (uff(t) + (k* + d?)u’ (t)) = 0, which means that u?, (t)
is an upper solution for each interval I;. Then put @y (t) = u (t) for
t € I; and iy (t) = uq(t) for t > to, which is our desired (weak) upper
solution on [a, b) such that @4 (¢t) > 1 for all ¢ € [a, to].

Put @_(t) = e for t € [a, tp] and some large positive c, which will
be determined later, and %_(t) = u_(t) for t > ¢g. Then, for t € [a, to),
Al (1) + AR ()T + R(Ou- () > Al (1) - dPu () =
n4f1 e *(a? — d?) > 0 for large . Thus @_(t) is our desired (weak)
lower solution such that for all ¢ € [a,b) 0 < @_(t) < G4 (¢t).
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If R(t, ) is the function of only ¢- variable, then we have the following

theorem.

Theorem 3.3 Assume that R(t,z) = R(t) € C*([a,b)) is a positive

function such that

4n o) 4n Ca
> > —
n+1(b—t)°‘_R(t)— n+1(b-t)?

for b >t >ty > a where a is arbitrary and § < 2 and C and C2 are

positive constants. Then equation (3.1) has a positive solution on [a,b).

Proof. We let u_(t) = (b — t)™ where m is a positive number. If we

take m large enough so that m;f‘q > a, then we have

n dn 1- 4
n+1u_(t)+ n+1k u_(t)" "1 — R(t)u_(t)
4n 4n 4 4n Ch
> " k2 (t l-—5 _ (&
2 O+ ke )T - e a0
4n m(m — 1) k? Ch
= b—t)™ -
n+1( )" (b—1t)? +(b—t)m?fi—1 (b——t)a]
> 0, b>t>ty>a,

which is possible for large fixed m.

And put u4(t) = e(b_t)é, where § is a positive constant such that 0 <
§ < min{1,2—B}. Then /. (t) = e® 1 [§2(b— )62 +-6(5 - 1) (b—1)°~2].

Hence
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an 4n
t
() + 05

n+1 t
(b= 1)%~2+6(5 = 1)(b — 1)’ e’

K2 (8) 77 — R(t)us (1)

+————4f 20 0w - R(t)e=Y”
n

I 0-0° [2( — £)252 1 5(5 — 1)(b — )02

IA

n+1
1200 (237 4 Caolb~1)7P] <0

as t — b. For sufficiently close to b, we can take the upper solution w4 (t)
so that 0 < u_(t) < u4(t). So by the upper and lower solution method,

we obtain a positive solution.

Remark The above resulting Warped product metric is a null geodesi—
cally incomplete one because ft t)dt < ft uy ()" ATt = f -’ gy <

Q.
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