GENERALIZED FUZZY VECTOR QUASIVARIATIONAL-LIKE INEQUALITIES[†]

MEE-KWANG KANG, BYUNG-SOO LEE*

Abstract. In this paper, we introduce a generalized vector quasivariational like inequality for fuzzy mappings and show the existence of solutions under compact assumption.

1. Introduction

By Giannessi [14], a vector variational inequality problem was introduced in a finite dimensional Euclidean space with its applications. Later many authors [1, 5, 9, 11, 15, 17-18, 21-24, 28-29, 34-35] have extensively studied the problem in infinite dimensional spaces under different assumptions. Especially, vector variational-like inequalities and vector quasivariational inequalities were considered on topological vector spaces were considered in [1, 5, 23, 35] and [17-18, 28, 36], respectively.

On the other hand, since Chang and Zhu [6] introduced a variational inequality problem for fuzzy mappings, it has been generalized to many kinds of variational inequality problems [2-4, 19-20, 22, 25-27, 31, 33], even though its history is very short. Recently some authors [3, 4, 20, 22,

Received February 03, 2005. Revised April 09, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 49J40.

Key words and phrases: Fuzzy mapping, vector quasivariational-like inequality, Ky Fan's section theorem, convex cone, upper semi-continuous, topologically open fuzzy set-valued, weakly open fuzzy set-valued.

[†] This work was supported by Dongeui University Research Fund of 2004.

^{*} Corresponding author.

25-26] considered vector variational inequality problems for fuzzy mappings. In particular, Chang et al. [3-4] studied vector quasivariational inequality problems for fuzzy mappings and Lee et al. [20] obtained a fuzzy extension of Siddiqi et al.'s results for vector variational-like inequalities. Also, in [2] vector variational-like inequalities for fuzzy mappings were dealt with, respectively.

In this paper, packaging "quasi" and "like", we introduce a generalized vector qua-sivariational-like inequality problems for fuzzy mappings and show the existence of solutions to our inequality problems, which are general outcomes of Lee et al.'s recent results [26].

2. Preliminaries

Let X and Y be topological spaces, and $T: X \to 2^Y$ a multivalued mapping. The following are easily known facts.

Definition 2.1. T is upper semicontinuous (in short, u.s.c.) at $x \in X$ if every open set V in Y containing T(x), there is an open set U containing x such that $T(u) \subseteq V$ for all $u \in U$; T is u.s.c. on X if T is u.s.c. at every point of X. T is lower semicontinuous (in short, l.s.c.) at $x \in X$ if for every open set V in Y with $T(x) \cap V \neq \emptyset$, there is an open set U containing x such that $T(u) \cap V \neq \emptyset$ for all $u \in U$; T is l.s.c. on X if T is l.s.c. at every point of X. T is continuous at x if T is both u.s.c. and l.s.c. at x. T is compact if T(X) is contained in some compact subset of Y, and T is closed if the graph of T, $G_TT = \{(x,y) \in X \times Y : y \in T(x)\}$ is closed in $X \times Y$. Let $T^-: Y \to 2^X$ be a multivalued mapping defined by

$$x \in T^{-}(y)$$
 if and only if $y \in T(x)$.

T is said to have open lower sections if for any $y \in Y$, $T^{-}(y)$ is open in X.

Lemma 2.1. T is l.s.c. at $x \in X$ if and only if for any $y \in T(x)$ and for any net $\{x_{\alpha}\}$ in X converging to x, there is a net $\{y_{\alpha}\}$ such that $y_{\alpha} \in T(x_{\alpha})$ for each α , and y_{α} converges to y.

Let X, Y be sets, $F: X \to \Im(Y)$ be a fuzzy mapping and denote a fuzzy set F(x) by F_x in Y for $x \in X$, where $\Im(Y)$ is the collection of all fuzzy sets in Y.

Definition 2.2. [2-4, 6] F is said to be convex on a set X if Y is a convex subset of a topological vector space and for any $x \in X$, y, $z \in Y$ and $\lambda \in [0,1]$,

$$F_x(\lambda y + (1 - \lambda)z) \ge \min\{F_x(y), F_x(z)\}.$$

F is closed fuzzy set-valued if for each $y \in Y$, $F_x(y)$ is u.s.c. on $X \times Y$ as a real ordinary function. F is topologically open fuzzy set-valued if for each $x_0 \in X$ and for each open subset V of Y with $F_{x_0}(y) \geq \gamma$ for some $y \in V$ ($\gamma \in (0,1]$), there is a neighborhood U of x_0 in X such that if $x \in U$, then $F_x(y) \geq \gamma$ for some $y \in V$. F is weakly open fuzzy set-valued if for each $y \in Y$, $F_x(y)$ is l.s.c. on $X \times Y$ as a real ordinary function.

Lemma 2.2. [2] Let K be a nonempty closed convex subset of a real Hausdorff topological vector space X, D a nonempty closed convex subset of a real Hausdorff topological vector space Y and $\beta: K \to (0,1]$ a l.s.c. function. Let $F: K \to \Im(D)$ be a fuzzy mapping with the cut set $(F_x)_{\beta(x)} := \{d \in D | F_x(d) \geq \beta(x)\} \neq \emptyset$ for any $x \in K$. Let $\bar{F}: K \to 2^D$ be a multivalued mapping defined by $\bar{F}(x) = (F_x)_{\beta(x)}$. If F is a convex fuzzy mapping with closed fuzzy set-values, then \bar{F} is a closed mapping with nonempty convex-values.

Lemma 2.3. [3] Let X and Y be topological spaces, and $F: X \to \Im(Y)$ be a fuzzy mapping such that for any $x \in X$, the cut set $(F_x)_{\gamma} := \{y \in Y: F_x(y) \geq \gamma\}$ is nonempty for $\gamma \in (0,1]$. Let $\bar{F}: X \to 2^Y$ be a multivalued mapping defined by $\bar{F}(x) = (F_x)_{\gamma}$. If F is convex and

topologically open fuzzy set-valued, then \vec{F} is a l.s.c. mapping with nonempty convex-values.

Lemma 2.4. [4] Let K be a nonempty closed convex subset of a real Hausdorff topological vector space X, D a nonempty closed convex subset of a Hausdorff topological vector space Y and $\beta: X \to (0,1]$ an u.s.c. function. Let $F: K \to \Im(D)$ be a fuzzy mapping such that for any $x \in K$, the strong cut set $[F_x]_{\beta(x)} := \{d \in D: F_x(d) > \beta(x)\}$ is nonempty. Let $\bar{F}: K \to 2^D$ be a multivalued mapping defined by $\bar{F}(x) = [F_x]_{\beta(x)}$.

- (1) If F is convex, then \overline{F} has nonempty convex-values.
- (2) If F is weakly open fuzzy set-valued, then \tilde{F} has open lower sections.

Definition 2.3. In an ordered Hausdorff topological vector space Z, usually a closed convex pointed solid proper cone P in Z defines partial orders < and \le as

$$x <_P y$$
 iff $x - y \in -int P$
 $x \le_P y$ iff $x - y \in -P$

for $x, y \in \mathbb{Z}$. To an arbitrary subset C of \mathbb{Z} , the orders can be extended by setting

$$C <_P 0$$
 iff $C \subseteq -int P$
 $C \le_P 0$ iff $C \subseteq -P$.

A point z_0 in a nonempty subset C of Z is called a vector maximal point of C [37] iff the set $\{z \in C : z_0 \leq_P z, z \neq z_0\} = \emptyset$, which is equivalent to

$$C \cap (z_0 + P) = \{z_0\}.$$

Lemma 2.5. [30] Let C be a nonempty compact subset of an ordered Banach space Z, then $\max C \neq \emptyset$, where $\max C$ denotes the set of all vector maximal points of C.

3. Main results

The following definitions on P-convexity and linearity of two variable functions are primitive concepts to obtain our results.

Definition 3.1. Let X, Z be two vector spaces, $K \subset X$ a nonempty convex set, and $P \subset Z$ a pointed, closed convex cone with apex at the origin and nonempty interior int P.

A multivalued mapping $H: K \times K \to 2^Z$ is said to be P-convex with respect to the first variable if for $x_1, x_2, y \in K$, $u_1 \in H(x_1, y)$, $u_2 \in H(x_2, y)$ and $\lambda \in [0, 1]$, there exists $u \in H(\lambda x_1 + (1 - \lambda)x_2, y)$ such that

$$\lambda u_1 + (1 - \lambda)u_2 \in u + P.$$

Definition 3.2. Let X, Z be vector spaces. We say that $\eta: X \times X \to Z$ is linear if

$$\eta(\lambda(x_1, y_1) + (x_2, y_2)) = \lambda \eta(x_1, y_1) + \eta(x_2, y_2),$$
for $(x_1, x_2), (y_1, y_2) \in X \times X$ and $\lambda \in \mathbb{R}$.

Throughout this section X denotes a Hausdorff topological vector space, Y a topological vector space and Z an ordered topological vector space. Let K be a nonempty convex subset of X, D a nonempty subset of Y and $\{C(x)|x\in K\}$ a family of solid convex cones in Z, that is, for any $x\in K$, int C(x) is nonempty and $C(x)\neq Z$. L(X,Z) denotes the space of all linear continuous operators from X to Z. Let $F:K\to \Im(D)$, $G:K\to \Im(K)$ be two fuzzy mappings and $M:K\times D\to 2^{L(X,Z)}$, $H:K\times K\to 2^Z$ two multivalued mappings, $\eta:X\times X\to X$ a mapping, $\beta:X\to (0,1]$ a function and γ a constant in (0,1].

We consider the following generalized vector quasivariational-like inequality for fuzzy mappings; **(F-VQVLI)** find $\bar{x} \in K$ such that for any $x \in K$ there exists $\bar{s} \in (F_{\bar{x}})_{\beta(\bar{x})}$ satisfying the following inequality;

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for any $z \in (G_{\bar{x}})_{\gamma}$ and $u \in H(x, \bar{x})$, where

$$\max \langle M(\bar{x},\bar{s}), \eta(x,z) \rangle = \max_{s \in M(\bar{x},\bar{s})} \langle s, \eta(x,z) \rangle,$$

and $\langle s, \eta(x, z) \rangle$ denotes the evaluation of continuous linear operator s from X into Z at $\eta(x, z)$.

Replacing $\Im(K)$ and $\Im(D)$ with 2^K and 2^D , respectively in (F-VQVLI), we obtain the following generalized vector quasivariational-like inequality for multivalued mappings;

(VQVLI) find $\bar{x} \in K$ such that for any $x \in K$ that exists $\bar{s} \in F(\bar{x})$ satisfying the following inequality;

$$\max \langle M(\bar{x},\bar{s}), \eta(x,z) \rangle + u \not\in -int \ C(\bar{x})$$

for any $z \in G(\bar{x})$ and $u \in H(x, \bar{x})$.

Deleting a topological vector space Y and a fuzzy mapping F first, and then replacing Z with an ordered topological vector space Y, H: $K \times K \to 2^Z$ with $H: K \times K \to Y$, and $M: K \times D \to 2^{L(X,Z)}$ with $S: K \to 2^{L(X,Y)}$ in (F-VQVLI) we obtain the following vector variation-like inequality for fuzzy mappings;

(F-VVLI) find $\bar{x} \in K$ satisfying the following inequality;

$$\max \langle S(\bar{x}), \eta(x,y) \rangle + H(x,\bar{x}) \not\in -int \ C(\bar{x})$$

for any $x \in K$ and any $y \in (G_{\bar{x}})_{\beta(\bar{x})}$, where $\{C(x) : x \in K\}$ is a family of closed convex cones in Y.

Replacing a fuzzy mapping $G: K \to \Im(K)$ with a multivalued mapping $G: K \to 2^K$ defined by G(x) = K for $x \in K$ and putting $H \equiv 0$ in **(F-VVLI)**, we obtain the following vector variational-like inequalities

for multivalued mappings,

(VVLI) find $\bar{x} \in K$ such that

$$\max \langle S(\bar{x}), \eta(x, y) \rangle \not\in -int C(\bar{x})$$

for any $x, y \in K$,

which is a generalized form of the following vector variational-like inequalities for multivalued mappings, introduced and studied by Chang, Thompson and Yuan [5];

(VVLI)' Find $\bar{x} \in K$ satisfying the following inequality;

$$\max \langle S(\bar{x}), \eta(x, \bar{x}) \rangle \not\in -int C(\bar{x})$$
 for $x \in K$.

Putting Z = Y, $\eta(x,z) = x - z$ and $H = \overline{0}$, and replacing $M : K \times D \to 2^{L(X,Z)}$ with $S : K \to L(X,Y)$ in **(VQVLI)**, we have the following variational inequality;

(VVI) find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - z \rangle \notin -int C(\bar{x})$$
 for any $x \in K$ and $z \in G(\bar{x})$.

Putting $C(x) \equiv C$ for $x \in K$ and $\eta(x,y) = x - y$ in (VVLI)', we obtain the following vector-valued variational inequality considered by Lee et al. [27]; find $\bar{x} \in K$ such that for each $x \in K$, there exists $\bar{s} \in S(\bar{x})$ such that

$$\langle \bar{s}, x - \bar{x} \rangle \not\geq_{-int C} 0,$$

where $x \not\geq_P y$ means $x - y \notin P$.

Putting $Z = \mathbb{R}$, $L(X,Z) = X^*$, the dual of X and $C(x) \equiv \mathbb{R}^+$, the positive orchant for $x \in K$ in (VVLI)', we obtain the following scalar-valued variational inequality considered by Cottle and Yao [12], Isac [16], and Noor [32]; find $\bar{x} \in K$ such that

$$\sup_{u \in S(\bar{x})} \langle u, \eta(x, \bar{x}) \rangle \ge 0, \quad \text{for } x \in K.$$

Replacing $S: K \to 2^{L(X,Z)}$ with $S: X \to L(X,Z)$ and putting $\eta(x,z) = x - g(z)$, where $g: K \to K$ is a mapping, then **(VVLI)**' reduces to the following vector variational inequality **(VVI)** considered by Siddiqi et al. [35];

 $(\mathbf{VVI})'$ find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - g(\bar{x}) \rangle \not\geq_{-int C(\bar{x})} 0, \text{ for } x \in K.$$

Putting $G(x) = \{x\}$ for $x \in K$ in **(VVI)** or g(x) = x for $x \in K$ in **(VVI)**, we obtain the following vector-valued variational inequality considered by Chen [7]; find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - \bar{x} \rangle \not\geq_{-int C(\bar{x})} 0, \text{ for } x \in K.$$

Putting $C(x) \equiv C$ and g(x) = x for $x \in K$ in **(VVI)**, we obtain the following vector-valued variational inequality considered by Chen et al. [7-8, 10]; find $\bar{x} \in K$ such that

$$\langle S(\bar{x}), x - \bar{x} \rangle \not\geq_{-int C} 0$$
, for $x \in K$.

The following theorem called Ky Fan's Section Theorem is a very important tool in nonlinear analysis.

Theorem 3.1. [13] Let K be a nonempty compact convex subset of a Hausdorff topological vector space. Let A be a subset of $K \times K$ having the following properties

- (i) $(x, x) \in A$ for all $x \in K$;
- (i) for any $x \in K$, the set $A_x := \{y \in K : (x,y) \in A\}$ is closed in K;
- (\bar{x}) for any $y \in K$, the set $A^y := \{x \in K : (x,y) \notin A\}$ is convex in K. Then there exists $\bar{y} \in K$ such that $K \times \{\bar{y}\} \subset A$.

We deal with (F-VQVLI) for the compact set case using Ky Fan's Section Theorem.

Theorem 3.2. Let K be a nonempty compact convex subset of X and D a nonemtpy closed convex subset of Y. Let $F: K \to \Im(D)$ be a convex fuzzy mapping with closed fuzzy set-values, $G: K \to \Im(K)$

a convex fuzzy mapping with topologically open fuzzy set-values, $M: K \times D \to 2^{L(X,Z)}$ a multivalued mapping, and a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-int \, C(x)\}, \, x \in K, \, \text{closed. Let } \eta: X \times X \to X \text{ be linear, } y \mapsto \eta(\cdot,y) \text{ continuous, and } H: K \times K \to 2^Z$ $P\text{-convex with respect to the first variable and l.s.c. with respect to the second, where <math>P:=\bigcap_{x \in K} C(x)$.

Suppose further that

- (1) there exist a l.s.c. function $\beta: X \to (0,1]$ and a constant $\beta \in (0,1]$ such that for any $x \in K$, the cut sets $(F_x)_{\beta(x)}$ and $(G_x)_{\gamma}$ are nonempty;
- (2) $\bigcup_{x \in K} (F_x)_{\beta(x)}$ is contained in some compact subset of D;
- (3) $\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle$ converges to $\max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \to y$, $s_{\alpha} \to s$ and $z_{\alpha} \to z$; and
- (4) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$. Then (F-VQVLI) is solvable.

Proof. Define multivalued mappings $\bar{F}: K \to 2^D$ and $\bar{G}: K \to 2^K$ by $\bar{F}(x) = (F_x)_{\beta(x)}$ and $\bar{G}(x) = (G_x)_{\gamma}$, respectively. Let $A = \{(x,y) \in K \times K : \text{there exists } s \in \bar{F}(y) \text{ such that } \max \langle M(y,s), \eta(x,z) \rangle + u \notin -int C(y) \text{ for any } z \in \bar{G}(y) \text{ and } u \in H(x,y) \}$. By condition (4), it is easily shown that $(x,x) \in A$, for all $x \in K$. Moreover $A_x = \{y \in K : (x,y) \in A\}$, $x \in K$ is closed. In fact, since G is topologically open fuzzy set-valued, by Lemma 2.3 \bar{G} is l.s.c.. Let $\{y_{\alpha}\}$ be a net in A_x such that $y_{\alpha} \to y$. Then by Lemma 2.1, for any $z \in \bar{G}(y)$ there exists a net $\{z_{\alpha}\}$ converging to z such that $z_{\alpha} \in \bar{G}(y_{\alpha})$ for each α . Also by the lower semicontinuity of H with respect to the second variable, for any $u \in H(x,y)$ there exists a net $\{u_{\alpha}\}$ converging to u such that $u_{\alpha} \in H(x,y_{\alpha})$ for each α . Since $y_{\alpha} \in A_x$ we can choose $s_{\alpha} \in \bar{F}(y_{\alpha})$ such that

$$\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle + u_{\alpha} \in W(y_{\alpha})$$

for $z_{\alpha} \in \bar{G}(y_{\alpha})$ and $u_{\alpha} \in H(x, y_{\alpha})$. By condition (2) and the closedness of \bar{F} owing to Lemma 2.2, we can assure the existence of limit s of $\{s_{\alpha}\}$

such that $s \in \bar{F}(y)$. Hence by condition (3) and the closedness of W, we have

$$\max \langle M(y,s), \eta(x,z) \rangle + u \in W(y)$$

for any $z \in \bar{G}(y)$ and $u \in H(x,y)$. Thus $A^y = \{x \in K : (x,y) \notin A\}$, $y \in K$ is convex. Indeed, let $x_1, x_2 \in A^y$ and $\lambda \in [0,1]$. Then from the fact that $(x_1,y) \notin A$ for any $s \in \bar{F}(y)$, there exist $z_1 \in \bar{G}(y)$ and $u_1 \in H(x_1,y)$ such that

$$\max \langle M(y,s), \eta(x_1,z_1) \rangle + u_1 \in -int C(y)$$

and from the fact that $(x_2, y) \notin A$ for any $s \in \bar{F}(y)$, there exist $z_2 \in \bar{G}y$) and $u_2 \in H(x_2, y)$ such that

$$\max \langle M(y,s), \eta(x_2,z_2) \rangle + u_2 \in -int C(y).$$

On the other hand, since G is convex, by Lemma 2.4(1) \bar{G} is convex-valued.

Hence for any $s \in \bar{F}(y)$, there exist $u \in H(\lambda x_1 + (1 - \lambda)x_2, y)$ and $z := \lambda z_1 + (1 - \lambda)z_2 \in \bar{G}(y)$ for $\lambda \in [0, 1]$ such that

$$\max \langle M(y,s), \eta(\lambda x_1 + (1-\lambda)x_2, z) \rangle + u$$

$$= \max \langle M(y,s), \eta(\lambda x_1 + (1-\lambda)x_2, \lambda z_1 + (1-\lambda)z_2) \rangle + u$$

$$= \max \langle M(y,s), (\lambda \eta(x_1, z_1) + (1-\lambda)\eta(x_2, z_2)) \rangle + u$$

$$\leq \lambda \max \langle M(y,s), \eta(x_1, z_1) \rangle + (1-\lambda) \max \langle M(y,s), \eta(x_2, z_2) \rangle + u$$

$$\in \lambda \max \langle M(y,s), \eta(x_1, z_1) \rangle + (1-\lambda) \max \langle M(y,s), \eta(x_2, z_2) \rangle$$

$$+ \lambda u_1 + (1-\lambda)u_2 - P$$

$$= \lambda (\max \langle M(y,s), \eta(x_1, z_1) \rangle + u_1)$$

$$+ (1-\lambda)(\max \langle M(y,s), \eta(x_2, z_2) \rangle + u_2) - P$$

$$\subseteq -int C(y) - int C(y) - C(y)$$

$$= -int C(y).$$

Thus $\lambda x_1 + (1 - \lambda)x_2 \in A^y$, which shows that A^y is convex. Hence by Ky Fan's Section Theorem there exists $\bar{x} \in K$ such that

$$K \times \{\bar{x}\} \subset A$$
,

which implies that for any $x \in K$, there exists $\bar{s} \in (F_{\bar{x}})_{\beta(\bar{x})}$ such that

$$\max \langle M(\bar{x}, \bar{s}), \eta(x, z) \rangle + u \not\in -int C(\bar{x})$$

for $z \in (G_{\bar{x}})_{\gamma}$ and $u \in H(x, \bar{x})$.

The following theorem is a direct corollary of Theorem 3.2.

Theorem 3.3. [26] Let K be a nonempty compact convex subset of X. Let $F: K \to \Im(L(X,Y))$ be a fuzzy mapping with closed fuzzy set-values, $G: K \to \Im(K)$ a convex fuzzy mapping with topologically open fuzzy set-values, and a multivalued mapping $W: K \to 2^Y$ defined by $W(x) = Y \setminus [-int C(x)], x \in K$ closed, where $\{C(x) : x \in K\}$ is a family of solid convex cones in Y. Let $P = \bigcap_{x \in K} C(x)$ and $h: K \to Y$ be a continuous P-convex function. Suppose further that

- (1) there exist a l.s.c. function $\beta: X \to (0,1]$ and a constant $\gamma \in (0,1]$ such that for any $x \in K$ the cut sets $(F_x)_{\beta(x)}$ and $(G_x)_{\gamma}$ are nonempty;
- (2) $\bigcup_{x \in K} (F_x)_{\beta(x)}$ is contained in some compact subset of L(X,Y); and
- (3) for any $x \in K$, there exists $s \in (F_x)_{\beta(x)}$ such that $\langle s, x z \rangle \notin -int C(x)$ for any $z \in (G_x)_{\gamma}$.

Then the following variational inequality;

(F-VVI) find $\bar{x} \in K$ such that for any $x \in K$, there exists $\bar{s} \in (F_{\bar{x}})_{\beta(\bar{x})}$ such that

$$\langle \bar{s}, x - z \rangle + h(x) - h(\bar{x}) \not\in -int C(\bar{x})$$
 for any $z \in (G_{\bar{x}})_{\gamma}$,

is solvable.

The following theorem for the existence of solutions to (VQVLI) is a direct consequence of Theorem 3.2.

Corollary 3.4. Let K be a nonempty compact convex subset of X and D a nonempty subset of Y. Let $F: K \to 2^D$ be closed, $G: K \to 2^K$ be l.s.c. and nonempty convex-valued, $M: K \times D \to 2^{L(X,Z)}$ be nonempty compact-valued, and a multivalued mapping $W: K \to 2^Z$ defined by $W(x) = Z \setminus \{-int C(x)\}, x \in K$, closed. Let $\eta: X \times X \to X$ be linear, and $H: K \times K \to 2^Z$ be P-convex with respect to the first variable and l.s.c. with respect to the second, where $P:=\bigcap_{x \in K} C(x)$.

Suppose further that

- (1) $\langle M(x,\cdot), \eta(x,\cdot) \rangle = 0$ and $H(x,x) = \{0\}$ for all $x \in K$;
- (2) F is compact; and
- (3) $\max \langle M(y_{\alpha}, s_{\alpha}), \eta(x, z_{\alpha}) \rangle$ converges to $\max \langle M(y, s), \eta(x, z) \rangle$ provided that $y_{\alpha} \to y$, $s_{\alpha} \to s$ and $z_{\alpha} \to z$.

Then (VQVLI) is solvable.

Remark 3.1. Corollary 3.4 is a generalized result of many outcomes in [1-7, 15, 17, 20-22, 26-28] and therein.

References

- [1] Q. H. Ansari, A note on generalized vector variational-like inequalities, Optimization 41 (1997), 197-205.
- [2] S. S Chang, Coincidence theorems and variational inequalities for fuzzy mappings, Fuzzy Sets and Systems 61 (1994), 359-368.
- [3] S. S. Chang, G. M. Lee and B. S. Lee, Vector quasivariational inequalities for fuzzy mappings (I), Fuzzy Sets and Systems 87 (1997), 307-315.
- [4] S. S. Chang, G. M. Lee and B. S. Lee, Vector quasivariational inequalities for fuzzy mappings (II), Fuzzy Sets and Systems 102 (1999), 333-344.
- [5] S. S. Chang, H. B. Thompson and G. X. Z. Yuan, The existence theorems of solutions for generalized vector-valued variational-like inequalities, Comput. Math. Appl. 37 (1999), 1–9.
- [6] Shin-sen Chang and Yuan-guo Zhu, On variational inequalities for fuzzy mappings, Fuzzy Sets and Systems **32** (1989), 359-367.

- [7] G. Y. Chen, Existence of solutions for a vector variational inequality: An extension of the Hartmann-Stampacchia theorem, J. Optim. Th. Appl. 74(3) (1992), 445-456.
- [8] G. Y. Chen and G. M. Cheng, Vector Variational Inequalities and Vector Optimization, Lecture Notes in Economics and Math. Systems 285, Springer Verlag, Berlin, 1987.
- [9] G. Y. Chen and B. D. Craven, Approximate dual and approximate vector variational inequality for multiobjective optimization, J. Austral. Math. Soc. (Series A) 47 (1989), 418-423.
- [10] G. Y. Chen and B. D. Craven, A vector variational inequality and optimization over an efficient set, Zeitscrift für Operations Research 3 (1990), 1-12.
- [11] G. Y. Chen and X. Q. Yang, The vector complementarity problem and its equivalences with the weak minimal element in ordered spaces, J. Math. Anal. Appl. 153 (1990), 136-158.
- [12] R. W. Cottle and J. C. Yao, Pseudo-monotone complementarity problems in Hilbert spaces, J. Optim. Th. Appl. 75(2) (1992), 281-295.
- [13] Ky Fan, A generalization of Tychonoff's fixed-point theorem, Mathematische Annalen 142 (1961), 305-310.
- [14] F. Giannessi, Theorems of alternative, quadratic programs, and complementarity problems, Variational Inequalities and Complementarity Problems (Cottle, Giannessi and Lions, eds.), John Wiley and Sons, New York, 1980.
- [15] ______, Vector Variational Inequality and Vector Equilibria, Mathematical Theories, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
- [16] G. Isac, A special variational inequality and the implicit complementarity problem, J. of the Faculty of Sciences, Univ. of Tokyo, Section IA, Mathematics 37 (1990), 107-127.
- [17] M. K. Kang and B. S. Lee, Generalized vector quasivariational-like inequalities, Honam Math. J. 26 (4) (2004).
- [18] W. K. Kim and K. K. Tan, On generalized vector quasi-variational inequalities, Optimization 46 (1999), 185-198.
- [19] S. Kum, Sharpened forms of coincidence theorems and variational inequalities for fuzzy mappings, Fuzzy Sets and Systems 79 (1996), 341-346.
- [20] B. S. Lee and D. Y. Jung, A fuzzy extension of Siddiqi et al.'s results for vector variational-like inequalities, Indian J. pure appl. Math. 34 (10) (2003), 1495-1502.
- [21] B. S. Lee and G. M. Lee, A vector version of Minty's lemma and application, Appl. Math. Lett. 12 (1999), 43-50.

- [22] B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector-valued variational inequalities and fuzzy extensions, J. Korean Math. Soc. 33 (1996), 609-624.
- [23] B. S. Lee, G. M. Lee and D. S. Kim, Generalized vector variational-like inequalities on locally convex Hausdorff topological vector spaces, Indian J. pure appl. Math. 28 (1997), 33-41.
- [24] G. M. Lee, D. S. Kim and B. S. Lee, Generalized vector variational inequality, Appl. Math. Lett. 9 (1) (1996), 39-42.
- [25] G. M. Lee, D. S. Kim and B. S. Lee, Strongly quasivariational inequalities for fuzzy mappings, Fuzzy Sets and Systems 78 (1996), 381-386.
- [26] G. M. Lee, D. S. Kim and B. S. Lee, Vector variational inequalities for fuzzy mappings, Nonlinear Analysis Forum 4 (1999), 119–129.
- [27] G. M. Lee, D. S. Kim, B. S. Lee and S. J. Cho, Generalized vector variational inequality and fuzzy extension, Appl. Math. Lett. 6 (1993), 47-51.
- [28] G. M. Lee, B. S. Lee and S. S. Chang, On vector quasivariational inequalities, J. Math. Anal. Appl. 203 (1996), 626-639.
- [29] K. L. Lin, D. P. Yang and J. C. Yao, Generalized vector variational inequalities, J. Optim. Th. Appl. 92 (1997), 117-125.
- [30] D. C. Luc, Theory of Vector Optimization, Lectures Notes in Econ. and Mathem. System, vol. 319, Springer-Verlag, Berlin, 1989.
- [31] M. A. Noor, Variational inequalities for fuzzy mappings (I), Fuzzy Sets and Systems 55 (1993), 309-312.
- [32] M. A. Noor, General variational inequalities, Appl. Math. Lett. 1 (1988), 119-121.
- [33] S. Park, B. S. Lee and G. M. Lee, A general vector-variational inequality and its fuzzy extension, Internat. J. Math. & Math. Sci. 21 (1998), 637-642.
- [34] A. H. Siddiqi, Q. H. Ansari and R. Ahmad, On vector variational-like inequalities, Indian J. pure appl. Math. 28(8) (1997), 1009-1016.
- [35] A. H. Siddiqi, Q. H. Ansari and A. Khaliq, On vector variational inequalities, J. Optim. Th. Appl. 84 (1995), 171-180.
- [36] N. X. Tan, Quasi-variational inequalities in topological linear locally convex Hausdorff spaces, Mathematische Nachrichten, 122 (1985), 231-245.
- [37] P. L. Yu, Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives, J. Optim. Th. Appl. 14 (1974), 319-377.

Mee-Kwang Kang

Department of Mathematics

Dongeui University

Busan 614-714, Korea

E-mail: mee@deu.ac.kr

Byung-Soo Lee

Department of Mathematics

Kyungsung University

Busan 608-736

Korea E-mail: bslee@ks.ac.kr