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NON-COMPACT MINIMAL SURFACES BOUNDED BY
CONVEX CURVES IN PARALLEL PLANES OF R3

SUN SooK JIN

Abstract. In this article, we solve some kinds of non-compact

Douglas-Plateau problem for two convex curves in parallel planes.

1. Introduction

The classical Douglas-Plateau problem for two compact contours is to
find a minimal annulus bounded by two disjoint Jordan curves. In 1931,
Douglas [3] proved that if A; and Ag are the least area disks bounded

by Jordan curves ; and -,, respectively, satisfying
inf{Area(S)} < Area(A;) + Area(As)

where the infimum is over all surfaces’ areas of annular type bounded by
v1 and 79, then there is a minimal annulus with the boundary y; U 7ys.

If v; and 7, are coaxial unit circles in parallel planes, then it is well
known that there is a constant A > 0 such that when the distance
between the centers is smaller than h, there are exactly two catenoids
bounded by 1 U 72; when the distance between the centers is larger
then h, there are no catenoids bounded by 71 U 2. Furthermore, by
Shiffman’s third theorem {13], any minimal annuli bounded by v1 U 72

must be a rotation surface hence is a piece of a catenoid. Thus there are
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either two, one, or zero minimal annuli bounded by 7; U v2 depending

on the distance between their centers.

Meeks and White [10] generalized the above observation to minimal
annuli bounded by two smooth convex Jordan curves y; U+, in different
parallel planes, i.e., there are either two, one, or zero minimal annuli
bounded by 7; U,. But unlike the coaxial circles case, there are no
simple criteria to tell us when do we have two, one, or zero minimal an-
nuli bounded by v; U v2. However, there are some partial conditions in
this case, for example, Hoffman and Meeks [6] gave a sufficient condition
to ensure that there are two solutions, i.e., if there is a connected com-
pact non-planar minimal surface (could be branched) whose boundary
is contained in open planar disks bounded by y; U~s, then there are two
minimal annuli bounded by v;Uvs. Yi Fang and J-H. Hwang generalized

the above results to the continuous boundary case as follows;

Proposition 1 ([5]). Let D, and Dg be two open disks lying on
parallel planes, and their boundaries o and 3 are continuous convex
Jordan curves, respectively. Suppose that there is a (maybe branched)
minimal surface . with 0% C Do U Dg, then there exist at least two
embedded minimal annuli A and B bounded by o U 3 such that

(1): A is stable, B is unstable. Recall a minimal surface is called
stable if, with respect to any non-trivial normal variation that fixes
the boundary, the second derivative of area functional is positive.
If the second derivative of area is negative for some variation, then
this surface is called unstable.

(2): If M # A is a compact (maybe branched) minimal surface with
OM C Do U Dg, then M is contained in the compact region of
R? bounded by AU D4 U Dg such that Int(A) N Int(M) = @ and
Int(B) NInt(M) # 0.

(8): Both A and B have the same symmetry group of the boundary.
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In this paper, we consider some kinds of non-compact Douglas-Plateau
problem, i.e., for two embedded proper complete curves in parallel planes,
at least one of which is non-compact, find a minimal annulus bounded by
the given curves. There is a classical example bounded by two parallel
straight lines, which is a piece of one of Riemann’s minimal examples.
Recall the one-parameter family of Riemann’s minimal examples are the
only complete minimal surfaces of R?® foliated by circles and straight
lines in parallel planes except planes, catenoids, and helicoids, see [12].
Recently, Yi Fang and J-F. Hwang [5] proved the existence of two embed-
ded minimal annuli bounded by continuously embedded, proper, com-
plete, non-compact, non-flat convex curves in parallel planes. They used
one of Jenkins and Serrin’s minimal graphs of [9] as the barrier confining
all of approximating surfaces.

In [7] we use one of Riemann’s minimal examples instead of a Jenkin’s
and Serrin’s graph as the barrier and obtained the existence result of
a pair of embedded minimal annuli in a slab which are bounded by a
convex Jordan curve and a straight line in parallel planes. Now, we
generalize this technique to the flat or non-flat boundary case and get

the following theorems;

Theorem 1. Let v C P; be a convex Jordan curve and let I' C Py be
a continuously embedded, proper, complete, non-compact convex curve,
where P, .= {(z,y,z) € R®| 2z = t} is a horizontal plane at the height
t € R. Denote D, by the compact planar disk in Py with 0D, = v
and let PJ be the half-plane of Py bounded by I'. Suppose that there
is a (maybe branched) compact minimal surface ¥ with 0¥ C D, UP_J.

Then there are two embedded minimal annuli A and B such that
1. 0A=08B=~UT.
2. For each t € (0,1), AN P, and BN P, are strictly convex Jordan

curves.

3. Int(A) NInt(B) = 0.
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4. If ¥ is a connected compact non-planar (maybe branched) mini-
mal surface such that 8%’ C D, U Py, then

Int(A) NInt(X') =0, BN #£0.

5. A and B have the same symmetry groups as that of yUT.

Theorem 2. Let T'! C P, and I'? C FB;,, t1 < tg, be continuously
embedded, proper, complete, non-compact convex curves. Suppose that
for all i = 1,2, there are parallel straight lines ¢ lying in P;, such that
& NT* = (), respectively. Observe I'Y, i = 1,2, separates the plane P;, by
two parts, i.e., the right one Ptl:ur and the left one Ptl;i’_, respectively.
If there is a (maybe branched) compact minimal surface ¥ with 0% C
PtI;I’_ U Ptl;z’+, then there are two embedded minimal annuli M and N
such that

1. OM = 0N =T1uT2

2. For eacht € (t1,t2), MNP, and N'N P, are strictly convex Jordan

curves.
3. Int(M)NInt(N) =0
4. Now let ¥’ be a connected compact non-planar (maybe branched)

minimal surface such that 9% C Ptlzl’— U PtI;”L, then

Int(M)NInt(E) =0, NN #£0.
5. M and N have the same symmetry groups as that of ' U 2.

The basic idea to prove the first theorem is to approximate a non-
compact curve I' C Py with covex Jordan curves ', C Py, n =1,2,3,---.
Then, by the above Proposition 1, we can get embedded minimal annuli
A, and B, bounded by vy UT,. Take a straight line £ C P, such that
n PO+ = (), and a Riemann’s minimal example bounded by the straight
line ¢ and a circle lying on P containing + in its interior. Then we can
use it as the barrier confining all of A,’s and B,’s. Together with the

similar method of the proof of Theorem 3.1 in [5], it leads us to prove
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that there are subsequences of {A,} and {B,} convergent to embedded
minimal annuli A and B, respectively, in the interior of the slab bounded
by Py and P;. Moreover, since the boundary curves v and I'y, are convex,
M. Shiffman’s first theorem in [13] shows that the intermediate curves
A, NP, and B, N B, 0 <t <1, are all strictly convex Jordan curves.
Therefore we can divide the approximating annulus A, into two graphs
over a vertical plane, each of which is simply connected. The same is true
for B,. Then we can use the Courant-Lebesgue lemma in [2] to prove
that the convergence can be extended to their boundaries, respectively,
and 04 = 9B =~vyUT.

2. Proof of the theorem 1

Let £ C Py denote the y-axis. We may assume without loss of gener-
ality that

(NP =0.

Recall that POJr denotes the right-half plane of Py bounded by I'. Let

{D,}, n=1,2,---, be a sequence of circular disks in Py such that

(DN E) C (Dny1NE), (DuNPH)C (Dny1 NEY),
lim D, =¢, 8%cC D,U(DiNPFy).
For example, if we take
2 1 2
T =a+n +n+a, anp =a+n"+n
for a large a > 0 satisfying the given conditions, then the disk

Dy = {(%,%,0) | (z —an)’ +¢* <7l }

satisfies all the above conditions.
On the other hand, let

T, := (0D, N P u(T'n Dy),
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and let Dy be the compact set in the half-plane P0+ with the boundary
T's. Then,

Dr, C Dr, C--~—>PJ.
Observe that for any r > 0 there is an integer ng > 0 such that
I,nC,=T'NC, whenever n > ng

where C, = {(z,y,2) € R*| 22 + y? < 72} is the vertical solid cylinder
of R?® with the radius 7 > 0. Since both « and I',, are continuous convex
curves in the parallel planes and 0¥ C D,UDr,, by Proposition 1, there
exist a stable embedded minimal annulus A,, and an unstable embedded
minimal annulus B, bounded by yUT',, for all n = 1,2, - - -, respectively.
Now we will show that both sequences {4,} and {B,} converge to the

desired minimal annuli.

Claim 1. Denote by D C P; a disk whose boundary 0D is a circle

containing -y in its interior. Then there is a piece of one of Riemann’s
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minimal examples R bounded by 0D U ¢ with
(1) Int(R) NInt(4,) = 0, Int(R) NInt(B,) =0

for all n € N.
proof. Recall 8& C DU D, for all n. Together with Proposition 1

again, it leads us to take a stable embedded minimal annulus R, such
that

OR, = 0D UOD,,.
Then, using the same argument in [7], we can show that

e The sequence of Gaussian curvatures {Kg,} of R, is uniformly
bounded.
e Given p € R3, there exists a positive number 79 = ro(p) and a

positive constant ¢ = ¢(p) such that for all n,
Area(R, N B,) < cr?

if 7 > 79, where B, := B(p,r) is the ball of radius r with center p.

These allow us to prove that there exists an embedded minimal annulus
R such that

lim R, =R, OR=0DUL

n—oco
It is well-known that R must be a piece of one of Riemann’s minimal
examples which are foliated by circles in parallel planes.

On the other hand, if m > n then the boundary curve 04, = 0B,
is contained in DU D,,. Since R,, is stable and dR,,, = 0D U dD,,, by
Proposition 1-(2), neither A, nor B, meets R, in their interiors, the

equation (1) follows.

Claim 2. Both sequences {A,} and {B,} converge to minimal annuli
A and B, respectively, with boundary yUT.

proof In the proof of Claim 1, we have shown that A, B, C V;, for
all m > n, where V,, is a solid in R3 bounded by Ry, UD,,, UD. Let V
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be a solid such that OV = R U F(fu D. Then we can say that
An, BoCcV forallneN.

Notice that OV meets the intermediate plane along the circles, so for
given 0 < ¢t < 1 we can choose a positive number r(¢) and a solid
cylinder C,( such that

VNP CCuy.

From now on, we have shown that for all n,
A, NSt 1) C Cr(t), B,nS(t 1) C Cr(t)

where 0 < t < 1, respectively. Now we can use the interior curvature
estimate in [5] and then the compactness lemma in [1], to prove the
smooth convergence of {4,NS(¢,1)} and {B,NS(t,1)}, forall0 < ¢t < 1.
Furthermore, being the limit curve of the sequence of strictly convex
curves, all the intermediate curves of .4 and B are strictly convex. Hence
A and B are minimal annuli.

Next, we extend the above convergence result to the boundary. Since
every intermediate curve 4, N P;, 0 < t < 1, is a strictly convex Jordan
curve, A, consists of two subsets A} and A, where Int(A4;") and Int(4;;)
are minimal graphs over a domain Qf; in a vertical plane II, where 9QF
is a piecewise smooth convex curve. If we choose a solid cylinder C,
with a sufficiently large radius » > 0 containing + in its interior, then
Apn \ Cr becomes a graph over a domain in the horizontal plane Py, and
An N IC, is a simple curve. Therefore, both A} N C, and A7 N C, are
simply connected minimal surfaces. Now we can take a closed unit disk

A in the plane and a conformal embedding
X,: A - R?

of AT N C, satisfying the three point condition. Observe all of the
Dirichlet integrals [, |IDX,|%, n € N, are uniformly bounded, since each
X, is conformal and A" N C, has a bounded area. Then by the well-

known Courant-Lebesgue lemma, see [3], we can say that AY N C, =
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Xn(A) converges to (A*¥ Uy UT) N C, and is continuous up to the

boundary. Similar argument for A~ also holds. Thus we see that
IANC)IN(PUP)=(Hul)nC,

for all » > 0 large enough. Moreover, it is clear that 04 C Py U P;.
Therefore A has the boundary v UT. With the similar method to B,

0A=0B=~yUT

and they are continuous up to boundary.

Now let ¥’ be a connected non-planar compact (maybe branched)

minimal surface such that
- =+
9x' c D, U P,

Let W, be the solid bounded by A, U D, U Dr,, and W be the solid
bounded by AUD, UF(T . Since each A, is stable, by Proposition 1-(2),

Int(A,) N Int(Z') = 0.

It follows that ¥ € W, for all n, and ¥’ C W for W,, — W. By the
comparison principle for minimal surfaces, either A = ¥’ or Int(A) N
Int(X) = @. Since X’ is compact and .A is not compact, both cannot be
equal. On the other hand all of B,,’s are unstable, so using Proposition 1-
(2) again we have B, N X' # § for all n, and so BNY # 0. Now let W},
be the solid bounded by B, U D, U Dr,, and W' be the solid bounded
by BU D, UF;. Since W) C W, for all n and lim, o W;, = W, we
have lim,_,,, W), = W/ C W. By the comparison principle for minimal

surfaces again, it follows that
IntANIntB = .

Finally, since A, and B, have the same symmetry group as that of
boundary for all n, the same holds for the limits A and B.
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3. Proof of the theorem 2

We may assume that there is a constant a > 0 such that

¢ = {(a,y,t1)|y e R}
e = {(“a’y’t2)iy€R}

Forrp,=a+n%+n+ % and a, = a + n? + n, take the circular disks

Dy = {(zy,t) | (z+a)’+y*<r; } C Py,
D} = {(z,y,t2) | (z— @)+’ <12} C P,
Let
rl = (@D:nPIT)uT nDY),
r2 .= (8DZnPL U (?nD2).

Note that I}, are continuous and con vex cureves lying in the plane P;,,
1 2

1 = 1,2, respectively. Let D]EI C Ptl: T Dlgz C Ptz "+ be the compact

sets bounded by I'} and I'2, respectively. Then

1 1 rt,— 2 2 2+
DnCDpyco-— By DrzCDpg Coo-— B,
Observe that for any r > 0 there is an integer ng > 0 such that
[LNC, =T'NC, whenever n > ng

where i = 1,2. It is clear that 0¥ C Df, U D3, C D} U D2 for all
n=1,2,3,---, by Proposition 1, there existna stabile embedded minimal
annulus M,, and an unstable embedded minimal annulus N,, bounded
by TLUTZ for all n =1,2,- - -, respectively.

On the other hand, with the same argument of the proof of The-
orem 1, we can take a sequence {R)} of pieces of stable Riemann’s

minimal examples in the slab S(¢1,?3) such that

OR!, = 0D} uoD?
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and show that this sequence converges to a piece of Riemann’s min-

imal example R’ bounded by ¢' U ¢2. Using this Riemann’s minimal

example as the barrier, together with the same argument of the proof of

Theorem 1, we can prove that

M,—- M, N,—=N an—o

where M and N, having the boundary I' UT?, are the desired minimal

annuli.
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