고온전단분쇄기술을 이용한 재생/신재 니트릴고무(NBR) 블렌드물의 가황거동 및 물리적 특성

Cure Behaviors and Physical Properties of Recycled/Virgin Nitrile Rubber (NBR) Blends by High Temperature Shear-Crushing Technique

  • 투고 : 2005.09.08
  • 심사 : 2005.10.20
  • 발행 : 2005.12.10

초록

니트릴고무(NBR) 신재와 작업현장에서 나온 스크랩을 고온 전단분쇄기술로 분말화한 재료(재생 NBR)를 다양한 혼합비로 블렌드물을 제조하고, 재생재료의 함량에 따른 블렌드물의 가황 거동, 물리적 특성의 변화를 조사하였다. 또한, 열 및 각종 유체에 대한 각 블렌드물의 저항성을 물리적 방법으로 조사하였다. 신재 NBR에 고온 전단 분쇄기술로 제조한 재생NBR을 0~50 phr의 함량으로 블렌드하여 가황거동 및 물리적 특성을 측정한 결과, 가황 거동은 점도가 증가하고 스코치 시간은 감소하였으며, 내열 및 유체특성은 향상되었다.

Virgin NBR and recycled NBR particles, which were pulverized from NBR scraps by high temperature shear-crushing technique, were blended with different mixing ratio. The effects of the recycled NBR content on the cure characteristics and physical properties of these blends were investigated and resistance properties of these blends to heat and various fluids were also studied. The study of cure characteristics showed that the viscosity increased but the scorch time decreased. The physical properties of rubber blends were improved with the addition of the recycled NBR for heat resistance and various fluid tests.

키워드

참고문헌

  1. Korea Institute of Resources Recycling, Recycling White Paper, 3, Cheong Moon Gak, Seoul (2004)
  2. P. Wright and A. P. C. Cwnming, Solid Polyurethane Elastomer, Maclaren Sons, London, (1969)
  3. R. D. Leaversugh, Modern Plastic, 40, July, 26 (1991)
  4. Akira Miyake, Plastic Age, 38, 127 (1992)
  5. G. Brewer, Eur. Plastics Recycling in Resource Recycling, Part and 2 (1987)
  6. Korea Resources Corporation, The study about technology of building material and new processes reusing bald tiers, Research paper (2001)
  7. B. D. Bawnan, Rubber World, May, 30 (1995)
  8. J. D. Osborn, Rubber World, May, 34 (1995)
  9. M. W. Rouse, Rubber World, June, 25 (1992)
  10. KS M 6518, Curing rubber physical test method
  11. D. Gibala and G. R. Hamed, Rubber Chem. Technol., 67, 636 (1994) https://doi.org/10.5254/1.3538699
  12. J. Y. Jin, H. S. Kim, and S. Y. Choi, J. Kor. ins. Rubb. Ind., 30, 1995
  13. A. Y. Coran, Rubber Chem. Technol., 37, 679 (1964) https://doi.org/10.5254/1.3540360
  14. D. Gibala, K. Laohapisitpanich, D. Thomas, and G. R. Hamed, Rubber Chem. Technol., 69, 115 (1996) https://doi.org/10.5254/1.3538351
  15. G. Mathew, R. P. Singh, N. R. Nair, and S. Thomas, Polymer, 42, 2137 (2001) https://doi.org/10.1016/S0032-3861(00)00492-4
  16. B. Adhikari, D. De, and S. Maiti, Prog. Polym. Sci., 25, 909 (2000) https://doi.org/10.1016/S0079-6700(00)00020-4
  17. A. Casale, R. S. Porter, and J. F. Johnson, Rubber Chem. Technol., 44, 534 (1971) https://doi.org/10.5254/1.3547378
  18. M. W. Ranney, K. J. Sollman, and R. J. Pickewell, Rubber Chem. Technol., 45, 1166 (1972)
  19. J. Franta, Elastomers and Rubber Compounding Materials, Chap. 5, Elsevier (1989)