저온 플라즈마 공정에 의한 효율적인 탈황 및 탈질

Efficient Desulfurization and Denitrification by Low Temperature Plasma Process

  • Kim, Sung-Min (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Dong-Joo (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Kyo-Seon (Department of Chemical Engineering, Kangwon National University)
  • 투고 : 2004.06.08
  • 심사 : 2004.10.18
  • 발행 : 2005.02.28

초록

본 연구에서는 펄스 코로나 방전 공정에 의해 $SO_2$$SO_2/NO$의 제거효율을 분석하였으며, 여러 공정변수가 제거효율에 끼치는 영향을 체계적으로 조사하였다. 공정변수로서 인가전압, 펄스 주파수, 체류시간, 반응물의 초기 농도(NO, $SO_2$, $NH_3$, $H_2O$, and $O_2$)의 영향을 분석하였다. 인가되는 전압, 펄스 주파수 또는 체류시간이 증가함에 따라 또는 $O_2$$H_2O$가 첨가됨에 따라 $SO_2$의 제거효율과 $SO_2/NO$의 동시 제거효율은 증가하였다. 또한, $NH_3$의 초기 농도가 증가할수록 $SO_2/NO$의 제거효율은 증가하였다. 이 실험적인 결과들은 $NO_x$$SO_x$를 제거하기 위한 펄스 코로나 방전 공정 장치 설계의 기초 자료로 사용될 수 있다.

In this study, we have analyzed the removal efficiencies of $SO_2$ and $SO_2/NO$ by the pulsed corona discharge process and investigated the effects of several process variables on those removal efficiencies systematically. The effects of process variables such as applied voltage, pulse frequency, residence time, and initial concentrations of reactants (NO, $SO_2$, $NH_3$, $H_2O$, and $O_2$) on the removal efficiency were analyzed. As the applied voltage, the pulse frequency or the residence time increases or as the $O_2$ or the $H_2O$ or the $NH_3$ concentration in the inlet feed gas stream increases, the $SO_2$ removal efficiencies and the simultaneous removal efficiencies of $SO_2/NO$ also increase. These experimental results can be used as a basis to design the pulsed corona discharge process to remove $NO_x$ and $SO_x$.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. Clements, J. S., Mizuno, A., Wright, C. F. and Davis, R. H., 'Combined Removal of $SO_2,\;NO_X$, and Fly Ash Simulated Flue Gas using Pulsed Streamer Corona,' IEEE Trans. Ind. Appl., 25(1), 63-69(1989)
  2. Chang, J. S., Lawless, P. A. and Yamanoto, T., 'Corona Discharge Process,' IEEE Trans. Ind. Appl., 19(6), 1152-1166(1991)
  3. Marnix, A. T., van Hardeveld, R. and van Veldhuizen, E. M., 'Reactions of NO in a Positive Streamer Corona Plasma,' Plasma Chem. Plasma Process., 17(4), 371-391(1997) https://doi.org/10.1023/A:1021818313047
  4. Masuda, S. and Hosokawa, S., 'Control of $NO_x$ by Positive and Negative Pulsed Corona Discharge,' IEEE Trans. Ind. Appl., 29(4), 781-785(1993) https://doi.org/10.1109/28.231994
  5. Nunez, C. M., Ramsey, G. H., Ponder, W. H., Abbott, James, H., and Hamel, L., 'An Innvolative Control Technology for VOCs and Air Toxics,' AIR & WASTE, 43(2), 242-247(1993) https://doi.org/10.1080/1073161X.1993.10467131
  6. Tas, M. A., van Hardeveld, R. and van Veldhuisen, E. M., 'Reactions of NO in a Positive Steamer Corona Plasma,' Plasma Chem. Plasma Process., 17(4), 371-391(1997) https://doi.org/10.1023/A:1021818313047
  7. van Veldhuisen, E. M., Zhou, L. M. and Rutgers, W. R., 'Combined Effects of Pulsed Discharge Removal of NO, $SO_2$ and $NH_3$ from Flue Gas,' Plasma Chem. Plasma Process., 18(1), 91-111 (1998) https://doi.org/10.1023/A:1021793327507
  8. Yan, W., Wang, N., Zhu, Y. and Zhang, Y., '$SO_2$ Removal from Industrial Flue Gases using Pulsed Corona Discharge,' J. Electrostatics, 44(1), 11-16(1998) https://doi.org/10.1016/S0304-3886(98)00018-7
  9. Oda, T., Yamashita, R., Takahashi, T. and Masuda, S., 'Atmospheric Pressure Discharge Plasma Decomposition for Gaseous Air Contaminants-Trichlorotrifluoroethane and Trichloroethylene,' IEEE Trans. Ind. Appl., 32(2), 227-232(1996) https://doi.org/10.1109/28.491469
  10. Urashima, K., Chang, J. S. and Ito, T., 'Reduction of $NO_x$ from Combustion Flue Gases by Superimposed Barrier Discharge Plasma Reactors,' IEEE Trans. Ind. Appl., 33(4), 879-886(1997) https://doi.org/10.1109/28.605727
  11. Mok, Y. S. and Nam, I. S., 'Modeling of Pulsed Corona Discharge Process for the Removal of Nitric Oxide and Sulfur Dioxide,' Chem. Eng. J., 85(1), 87-97(2002) https://doi.org/10.1016/S1385-8947(01)00221-2
  12. Bromberg, L., Cohn, D. R., and Rabinovich, A., 'Plasmatron Fuel Converter-Catalyst Systems for After Treatment of Diesel Vehicle Emissions,' International J. Vehicle Design, 25(4), 275-282(2001) https://doi.org/10.1504/IJVD.2001.005202
  13. Nishikawa, K. and Nojima, H., 'Air Purification Effect of Positively and Negatively Charged Ions Generated by Discharge Plasma at Atmospheric Pressure,' Jpn. J. Appl. Phys., 40(8), 835-837(2001) https://doi.org/10.1143/JJAP.40.L835
  14. Amirov, R. H., Chae, J. O., Dessiaterik, Y. N., Filimonova, E. A. and Zhelezniak, M. B., 'Removal of $NO_x$ and $SO_2$ from Air Excited Streamer Corona: Experimental Results and Modeling,' Jpn. J. Appl. Phys.,, 37(6), 3521-3529(1998) https://doi.org/10.1143/JJAP.37.3521
  15. Park, J. Y., Kim, I. K., Koh, H. S., Kim, J. D., Lee, D. C. and Chang, J. S., '$SO_2$ Effect on $NO_x$ Removal by Corona Discharge System,' Trans. KIEE., 47(11), 1979-1982(1998)
  16. Kim, Y. H. and Hong, S. H., '$NO_x/SO_x$ Decomposition of Flue Gases by AC Dielectric Barrier Corona Discharges,' Ungyong Mulli, 11(4), 393-400(1998)
  17. Dinelli, G. L. and Civitano, M., 'Industrial Experiments on Pulsed Corona Simultaneous Removal of $NO_x$ and $SO_2$ from Flue Gas,' IEEE Trans. Ind. Appl., 26(4), 535-541(1990) https://doi.org/10.1109/28.55956
  18. Kim, D. J., Choi, Y. R. and Kim, K. S., 'Effects of Process Variables on $NO_x$ Conversion by Pulsed Corona Discharge Process,' Plasma Chem. Plasma Process., 21(4), 625-650(2001) https://doi.org/10.1023/A:1012007319848
  19. Kim, D. J. and Kim, K. S., 'Analysis on Plasma Chemistry and Particle Growth in Corona Discharge Process for $NO_x$ Removal Using Discrete-Sectional Method,' IEEE Trans. Plasma Sci., 31(2), 227-235(2003) https://doi.org/10.1109/TPS.2003.808872
  20. Park, J. H, Kim, D. J. and Kim, K. S., 'Analysis on $NO_x$ Conversion and Particle Characteristics in $NO_x$ Removal by Corona Discharge Process,' HWAHAK KONGHAK, 40(3), 351-356(2002)
  21. Chang, J.-S., Pontiga, F., Atten, P. and Castellanos, A., 'Hysterisis Effect of Corona Discharge in a Narrow Coaxial Wire-Pipe Discharge Tube with Gas Flow,' IEEE Trans. Ind. Appl., 32(6), 1250-1256(1996) https://doi.org/10.1109/28.556626
  22. Chang, M. B., Balbach, J. H., Rood, M. J. and Kushner, M. J., 'Removal of $SO_2$ from Gas Streams Using a Dielectric Barrier Discharge and Combined Plasma Photolysis,' J. Appl. Phys., 69(8), 4409-4417(1991) https://doi.org/10.1063/1.348367