Pervaporation Characteristics of Water/Ethanol Mixture through Hydrophilic Zeolite Membranes

친수성 제올라이트 분리막의 물/에탄올 투과증발 특성

  • Ahn, Hyoseong (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Lee, Hyeryeon (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Lee, Yongtaek (Department of Chemical Engineering, College of Engineering, Chungnam National University)
  • Received : 2004.07.15
  • Accepted : 2004.10.12
  • Published : 2005.02.10

Abstract

Zeolite membranes show better thermal, mechanical, chemical stabilities than polymer membranes. Water was separated from water/ethanol mixtures by pervaporation using the NaA and the NaY zeolite membranes synthesized in our laboratory. The effects of concentration of ethanol at the feed side and temperature were studied on the permeation flux and separation factor of water. The separation factors obtained with the NaA zeolite membrane was found to be 1000 times higher than those obtained with the NaY. However, the water flux through the NaA zeolite membrane was observed to be lower than 1/2 of that through the NaY zeolite membrane.

고분자 분리막에 비하여 열적, 기계적, 화학적 안정성이 우수한 친수성 NaA 및 NaY 제올라이트 분리막을 투과증발 막분리 공정에 적용하여 물/에탄올 혼합물에서 선택적으로 물을 분리하고자 하였다. 공급되는 에탄올의 농도 변화 및 투과증발 실험 온도의 변화가 투과플럭스와 물 선택도에 미치는 영향을 고찰하였다. NaA 제올라이트 분리막은 투과증발 실험 결과 NaY 제올라이트 분리막에 비해 동일 실험 조건에서 물의 투과 선택도는 1000배 이상 우수하나 물 투과플럭스는 상대적으로 작아 약 1/2 정도였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. R. D. Noble and S. A. Stern, Membrane Separation Technology Principles and Application, Elsevier Science B. Y., The Netherlands (1995)
  2. Y. M. Lee, Pervaporation of Organic Liquid Mixtures Through Polymer Membranes, Polymer, 13, 3 (1989)
  3. Y. K. Hong and W. H. Hong, HWAHAK KONGHAK, 36, 524 (1998)
  4. C. C. Pereira, A. C. Habert, R. Nobrega, and C. P. Borges, J. Memb. Sci., 138, 227 (1998)
  5. D. Hofmann, L. Fritz, and D. Paul, J. Memb. Sci., 144, 145 (1998)
  6. Q. Liu, R. D. Noble, J. L. Falconer, and H. H. Funke, J. Memb. Sc.,, 117, 163 (1996)
  7. D. W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York (1974)
  8. H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, and K. Okamoto, J. Mater. Sci. Lett., 14, 206 (1995) https://doi.org/10.1007/BF00318258
  9. M. Kondo, M. Komori, H. Kita, and K. Okamoto, J. Memb. Sci., 133, 133 (1997) https://doi.org/10.1016/S0376-7388(97)00087-2
  10. D. Shah, K. Kissick, A. Ghorpade, R. Hannah, and D. Bhattacharyya, J. Memb. Sci., 179, 185 (2000) https://doi.org/10.1016/S0376-7388(00)00515-9
  11. H. Kita, K. Fuchida, T. Horita, H. Asamura, and K. Okamoto, Sep. Puri. Tech., 25, 261 (2001) https://doi.org/10.1016/S1383-5866(01)00191-5
  12. M. Lassinantti, J. Hedlund, and J. Sterte, Micro. Meso. Mater., 38, 25 (2000) https://doi.org/10.1016/S1387-1811(99)00296-6
  13. Y. K. Jung, H. S. Ahn, S. B. Lee, and Y. T. Lee, J. Korean Ind. Eng. Chem., 15, 366 (2004)
  14. R. C. Reid, J. M. Prausnitz, and B. E. Poling, Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1987)