References
- Abeysinghe, R. D., Greene, B. T., Haynes, R., Willingham, M. C., Turner, J., Planalp, R. P., Brechbiel, M. W., Torti, F. M. and Torti, S. V. (2001) p53-independent apoptosis mediated by tachpyridine, an anti-cancer iron chelator. Carcinogenesis 22, 1607-1614 https://doi.org/10.1093/carcin/22.10.1607
- Brustovetsky, N., Brustovetsky, T., Jemmerson, R. and Dubinsky, J. M. (2002) Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem. 80, 207-218 https://doi.org/10.1046/j.0022-3042.2001.00671.x
- Bunz, F., Hwang, P. M., Torrance, C., Waldman, T., Zhang, Y., Dillehay, L., Williams, J., Lengauer, C., Kinzler, K. W. and Vogelstein, B. (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263-269 https://doi.org/10.1172/JCI6863
- Carson, D. A. and Lois, A. (1995) Cancer progression and p53. Lancet 346, 1009-1011 https://doi.org/10.1016/S0140-6736(95)91693-8
- Cassarino, D. S., Parks, J. K., Parker, W. D. Jr. and Bennett, J. P. Jr. (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim. Biophys. Acta 1453, 49-62 https://doi.org/10.1016/S0925-4439(98)00083-0
- Fujiwara, T., Grimm, E. A., Mukhopadhyay, T., Cai, D. W., Owen-Schaub, L. B. and Roth, J. A. (1993) A retroviral wildtype p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res 53, 4129-4133
- Galmarini, C. M., Kamath, K., Vanier-Viornery, A., Hervieu, V., Peiller, E., Falette, N., Puisieux, A., Ann Jordan, M. and Dumontet, C. (2003) Drug resistance associated with loss of p53 involves extensive alterations in microtubule composition and dynamics. Br. J. Cancer 88, 1793-1799 https://doi.org/10.1038/sj.bjc.6600960
- Kho, P. S., Wang, Z., Zhuang, L., Li, Y., Chew, J. L., Ng, H. H., Liu, E. T. and Yu, Q. (2004) p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J. Biol. Chem. 279, 21183-21192 https://doi.org/10.1074/jbc.M311912200
- Kim, T. H., Zhao, Y., Barber, M. J., Kuharsky, D. K. and Yin, X. M. (2000) Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem. 275, 39474-39481 https://doi.org/10.1074/jbc.M003370200
- Kim, T. H., Zhao, Y., Ding, W. X., Shin, J. N., He, X., Seo, Y. W., Chen, J., Rabinowich, H., Amoscato, A. A. and Yin, X. M. (2004) Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol. Biol. Cell. 15, 3061-3072 https://doi.org/10.1091/mbc.E03-12-0864
- Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R. and Newmeyer, D. D. (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331-342 https://doi.org/10.1016/S0092-8674(02)01036-X
- Lanni, J. S., Lowe, S. W., Licitra, E. J., Liu, J. O. and Jacks, T. (1997) p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc. Natl. Acad. Sci. USA 94, 9679-9683
- Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E. and George, D. L. (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcll complex. Nat. Cell. Biol. 6, 443-450 https://doi.org/10.1038/ncb1123
- Lowe, S. W., Ruley, H. E., Jacks, T. and Housman, D. E. (1993a) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957-967 https://doi.org/10.1016/0092-8674(93)90719-7
- Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. and Jacks, T. (1993b) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847-849 https://doi.org/10.1038/362847a0
- Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E. and Jacks, T. (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266, 807-810 https://doi.org/10.1126/science.7973635
- Lutter, M., Fang, M., Luo, X., Nishijima, M., Xie, X. and Wang, X. (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell. Biol. 2, 754-761 https://doi.org/10.1038/35036395
- Marchini, S., Ciro, M. and Broggini, M. (1999) P53-independent caspase-mediated apoptosis in human leukaemic cells is induced by a DNA minor groove binder with antineoplastic activity. Apoptosis 4, 39-45 https://doi.org/10.1023/A:1009630132087
- Nakano, K. and Vousden, K. H. (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 7, 683-694 https://doi.org/10.1016/S1097-2765(01)00214-3
- Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058 https://doi.org/10.1126/science.288.5468.1053
- Petit, T., Bearss, D. J., Troyer, D. A., Munoz, R. M. and Windle, J. J. (2003) p53-independent response to cisplatin and oxaliplatin in MMTV-ras mouse salivary tumors. Mol. Cancer Ther. 2, 165-171
- Petronilli, V., Cola, C., Massari, S., Colonna, R. and Bernardi, P. (1993) Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J. Biol. Chem. 268, 21939-21945
- Ravi, R. and Bedi, A. (2002) Requirement of BAX for TRAIL/Apo2L-induced apoptosis of colorectal cancers: synergism with sulindac-mediated inhibition of Bcl-x(L). Cancer Res. 62, 1583-1587
- Seo, Y. W., Shin, J. N., Ko, K. H., Cha, J. H., Park, J. Y., Lee, B. R., Yun, C. W., Kim, Y. M., Seol, D. W., Kim, D. W., Yin, X. M. and Kim, T. H. (2003) The molecular mechanism of Noxainduced mitochondrial dysfunction in p53-mediated cell death. J. Biol. Chem. 278, 48292-48299 https://doi.org/10.1074/jbc.M308785200
- Seol, D. W. and Billiar, T. R. (2000) Cysteine 230 modulates tumor necrosis factor-related apoptosis-inducing ligand activity. Cancer Res. 60, 3152-3154
- Song, J. H., Song, D. K., Pyrzynska, B., Petruk, K. C., Van Meir, E. G. and Hao, C. (2003) TRAIL triggers apoptosis in human malignant glioma cells through extrinsic and intrinsic pathways. Brain Pathol. 13, 539-553 https://doi.org/10.1111/j.1750-3639.2003.tb00484.x
- Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. and Vogelstein, B. (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell. 7, 673-682 https://doi.org/10.1016/S1097-2765(01)00213-1
- Zhang, L., Yu, J., Park, B. H., Kinzler, K. W. and Vogelstein, B. (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290, 989-992 https://doi.org/10.1126/science.290.5493.989
Cited by
- Overexpression of optic atrophy 1 protein increases cisplatin resistance via inactivation of caspase-dependent apoptosis in lung adenocarcinoma cells vol.43, pp.1, 2012, https://doi.org/10.1016/j.humpath.2011.04.012
- Mitochondrial dysfunction induced by different concentrations of gadolinium ion vol.100, 2014, https://doi.org/10.1016/j.chemosphere.2013.11.031
- Dexamethasone inhibits apoptosis in C6 glioma cells through increased expression of Bcl-XL vol.11, pp.7, 2006, https://doi.org/10.1007/s10495-006-7233-1
- Inhibition of autophagy by 3-MA potentiates purvalanol-induced apoptosis in Bax deficient HCT 116 colon cancer cells vol.328, pp.1, 2014, https://doi.org/10.1016/j.yexcr.2014.07.022
- Canonical and new generation anticancer drugs also target energy metabolism vol.88, pp.7, 2014, https://doi.org/10.1007/s00204-014-1246-2
- QS-ZYX-1-61 induces apoptosis through topoisomerase II in human non-small-cell lung cancer A549 cells vol.103, pp.1, 2012, https://doi.org/10.1111/j.1349-7006.2011.02103.x
- Enhanced intestinal absorption of etoposide by self-microemulsifying drug delivery systems: Roles of P-glycoprotein and cytochrome P450 3A inhibition vol.50, pp.3-4, 2013, https://doi.org/10.1016/j.ejps.2013.08.016