Serum and Cerebrospinal Fluid(CSF) Nitric Oxide, Macrophage Inflammatory Protein-1 α and Lactoferrin Levels in Aseptic Meningitis

무균성 뇌수막염 환자의 뇌척수액과 혈청에서 Nitric Oxide, Macrophage Inflammatory Protein(MIP)-1α, Lactoferrin 값의 비교

  • Seo, Young (Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Sim, Jung Yeon (Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Shim, Jae Won (Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Kim, Deok Su (Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Jung, Hye Lim (Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Park, Moon Soo (Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine)
  • 서영 (성균관대학교 의과대학 강북삼성병원 소아과) ;
  • 심정연 (성균관대학교 의과대학 강북삼성병원 소아과) ;
  • 심재원 (성균관대학교 의과대학 강북삼성병원 소아과) ;
  • 김덕수 (성균관대학교 의과대학 강북삼성병원 소아과) ;
  • 정혜림 (성균관대학교 의과대학 강북삼성병원 소아과) ;
  • 박문수 (성균관대학교 의과대학 강북삼성병원 소아과)
  • Received : 2004.08.11
  • Accepted : 2004.09.24
  • Published : 2005.01.15

Abstract

Purpose : The pathologic mechanisms of central nervous system(CNS) injuries in human meningitis are not yet completely understood. Recent studies indicate that the host inflammatory responses are as important in brain damage as the infecting organisms and toxins. There have been some reports on the relationship of nitric oxide(NO), macrophage inflammatory protein-$1{\alpha}$(MIP-$1{\alpha}$), and lactoferrin in bacterial meningitis, but few reports in aseptic meningitis. Thus, we investigated the concentrations of NO, MIP-$1{\alpha}$ and lactoferrin in cerebrospinal fluid(CSF) and serum of patients with aseptic meningitis and control subjects and evaluated their relationship with other parameters of meningitis. Methods : CSF and blood were obtained from 25 subjects with aseptic meningitis and 15 control subjects. After centrifugation, supernatants were stored at $-70^{\circ}C$ and we assayed the concentrations of NO, MIP-$1{\alpha}$ and lactoferrin with the ELISA method. There were no patients with neurologic sequelae after being recovered from aseptic meningitis. Results : Concentrations of CSF and serum NO, MIP-$1{\alpha}$ were not increased in aseptic meningitis subjects compared to control subjects. Concentration of CSF lactoferrin was significantly elevated in patients with aseptic meningitis and concentration of serum lactoferrin was significantly decreased in patients with aseptic meningitis compared with those in control subjects(P<0.05). CSF lactoferrin level was positively correlated with CSF WBC counts($r_s=0.449$, P=0.007), especially with neutrophil counts($r_s=0.574$, P<0.001) and CSF protein level($r_s=0.508$, P=0.002). Conclusion : Lactoferrin plays an important role in aseptic meningitis and may be released from neutrophils recruited from blood to the CSF through breakdown of blood-brain barrier. NO and MIP-$1{\alpha}$ may not be important factors in the pathogenesis of aseptic meningitis without neurologic sequelae.

목 적 : 중추신경계감염의 병리학적인 정보는 아직 미약하고 정확하게 규명된 바가 없지만 최근의 여러 연구들에 의하면 병원균의 직접적인 침습보다는 숙주의 염증반응이 뇌 손상의 중요한 인자가 됨을 밝힘으로써 여러 사이토카인이나 독소, 인터루킨 등이 뇌수막 염증반응을 유도한다고 밝혀져 있다. 최근 세균성 뇌수막염에서 NO, MIP-$1{\alpha}$, lactoferrin의 역할에 대한 보고들이 있었으나 아직 무균성 뇌수막염 환자를 대상으로 한 보고는 별로 없었고 특히 국내에서 보고된 바는 없었다. 이에 저자들은 무균성 뇌수막염 환아의 혈액과 뇌척수액에서 NO, MIP-$1{\alpha}$, lactoferrin의 농도를 측정하여 대조군과 비교하고, 다른 뇌수막염 관련인자들 사이의 상관관계를 비교 분석하고자 하였다. 방 법 : 2002년 6월부터 7월까지 강북삼성병원 소아과 입원환자 중 발열과 뇌막자극증상을 보인 40명의 환아들을 대상으로 뇌척수액 검사를 시행하여, 무균성 뇌수막염 소견을 보인 25명을 뇌수막염군, 정상소견을 보인 15명을 대조군으로 하였다. 입원당일 혈액과 뇌척수액을 채취하여 혈액에서 백혈구수와 CRP를 측정하고, 뇌척수액에서 백혈구수와 당, 단백농도, 뇌압을 측정하였다. 나머지 혈액 및 뇌척수액 검체는 실온에서 10분간 2,000 rpm으로 원심 분리하여 영하 70도에서 보관 후 ELISA 방법을 이용하여 각각의 검체에서 일시에 NO, MIP-$1{\alpha}$, lactoferrin의 농도를 측정하였다. 무균성 뇌수막염군에서 신경학적 후유증을 보인 경우는 없었다. 결 과 : 1) 혈액과 뇌척수액의 NO의 농도는 대조군과 무균성 뇌수막염 사이에 차이를 보이지 않았다. 2) 혈액과 뇌척수액의 MIP-$1{\alpha}$의 농도는 대조군과 무균성 뇌수막염 사이에 차이를 보이지 않았다. 3) 무균성 뇌수막염군의 뇌척수액 lactoferrin 농도는 대조군에 비해 의미 있게 증가되었으며 혈액 lactoferrin 농도는 대조군에 비해 의미 있게 감소되었다. 4) 뇌척수액 lactoferrin 농도는 뇌척수액 백혈구수($r_s=0.449$, P=0.007), 특히 중성구 수와 양의 상관관계를 보였으며($r_s=0.574$, P<0.001), 뇌척수액 단백 농도와 양의 상관관계를 보였다($r_s=0.508$, P=0.002). 결 론 : 무균성 뇌수막염 환아의 뇌척수액에서 lactoferrin은 의미 있게 증가하여 무균성 뇌수막염의 면역 반응에 중요한 역할을 할 것으로 생각되며, 이는 뇌-혈관 장막 붕괴로 인해 혈액에서 뇌척수액으로 유입된 중성구에서 분비되었을 가능성과, 뇌-혈관 장막 붕괴로 인해 혈액에서 뇌척수액으로 직접 유입되었을 가능성이 있는 것으로 생각된다.

Keywords

References

  1. Tsukahara H, Haruta T, Todoroki Y, Maeda M, Mayumi M. Oxidant and antioxidant activities in childhood meningitis. Life Science 2002;71:2797-806 https://doi.org/10.1016/S0024-3205(02)02137-9
  2. Ohga S, Aoki T, Akeda H, Fufioka K, Ohshima A. Cerebrospinal fluid concentration of interleukin-1$\beta$, tumor necrosis factor-$\alpha$ and interferon gamma in bacterial meningitis. Arch Dis Child 1994;70:123-5. https://doi.org/10.1136/adc.70.2.123
  3. Rhee CK, Jeon SJ, Jung SW, Lee CH, Oh CH. The protective effect of Nitric Oxide Synthase Inhibitor on hearing loss induced by TNF-$\alpha$ and IL-1$\alpha$ injection into CSF in Guinea Pigs. Korean J Otolaryngol 2001;44:794-9
  4. Oka M, Hirouchi M, Itoh Y, Ukai Y. Involvement of peroxynitrite and hydroxyradical generated from nitric oxide in hypoxia/reoxygeneration injury in rat cerebrocortical slices. Neuropharmacology 2000;39:1319-30 https://doi.org/10.1016/S0028-3908(99)00197-5
  5. Kawashima H, Watanabe Y, Ichiyama T, Mizuguchi M, Yamada N, Kashiwagi Y, et al. High concentration of serum $NO_x$(nitrite/nitrate) obtained from patients with influenza- associated encephalopathy. Pediatr International 2002; 44:705-7 https://doi.org/10.1046/j.1442-200X.2002.01650.x
  6. Tsukahara H, Haruta T, Hata I, Mayumi M. Nitric oxide in septic and aseptic meningitis in children. Scand J Clin Lab Invest 1998;58:73-80 https://doi.org/10.1080/00365519850186850
  7. Takada T, Suzuki E, Morohashi K, Omori K, Gejyo F. MCP-1 and MIP-1A Gene Polymorphisms in Japanese patients with Sarcoidosis. Intern Med 2002;41:813-8 https://doi.org/10.2169/internalmedicine.41.813
  8. Saukkonen K, Sande S, Cioffe C, Wolpe S, Cerami A, Tuomanen E, et al. The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med 1990;171:439-48
  9. Levay PF, Viljoen M. Lactoferrin : a general review. Haematologica 1995; 80:252-67
  10. Maffei FA, Heine RP, Whalen MJ, Mortimer LF, Carcillo JA. Levels of antimicrobial molecules defensin and lactoferrin are elevated in the cerebrospinal fluid of children with meningitis. Pediatrics 1999;103:987-92 https://doi.org/10.1542/peds.103.5.987
  11. Soderquist BO, Sundqvist KG, Jones I, Holmberg H, Vikerfors T. Interleukin-6, C-reactive protein, lactoferrin and white blood cell counts in patients with Staphylococcus aureus septicemia. Scand J Infect Dis 1995;27:375-80 https://doi.org/10.3109/00365549509032734
  12. Auer M, Pfister LA, Leppert D, Tauber MG, Leib SL. Effects of clinically used antioxidants in experimental pneumococcal meningitis. J Infect Dis 2000;182:347-50 https://doi.org/10.1086/315658
  13. Son YG, Kim KI, Jo HC, Rhee JA, Bae BJ, Choi HC, et al. Interactions of nitric oxide and antioxidants in hypoxiareoxygenation injury. J Korean Surg Soc 2003;64:275-81
  14. Koedel U, Pfister HW. Oxidative stress in bacterial meningitis. Brain Pathology 1999;9:57-67
  15. Wood JG, Johnson JS, Mattioli LF, Gonzalez NC. Systemic hypoxia promotes leukocyte-endothelial adherence via reactive oxidant generation. J Appl Physiol 1999;87:1734-40
  16. Takehara Y, Nakahara H, Okada S, Yamaoka K, Hamazaki K, Yamazato A, et al. Oxygen concentration regulates NOdependent relaxation of aortic smooth muscles. Free Radic Res 1999;30:287-94 https://doi.org/10.1080/10715769900300311
  17. Tureen J. Effects of recombinant human tumor necrosis factor-alpha on cerebral oxygen uptake, cerebrospinal fluid lactate, and cerebral blood flow in the rabbit : role of nitric oxide. J Clin Invest 1995;95:1086-91 https://doi.org/10.1172/JCI117755
  18. Kawashima H, Watanabe Y, Morishima T, Takekuma K, Hoshika A, Mori T, et al. $NO_x$(Nitrite/Nitrate) in cerebral spinal fluids obtained from patients with influenza-associated encephalopathy. Neuropediatrics 2003;34:137-40. https://doi.org/10.1055/s-2003-41278
  19. Davis KL, Martin E, Turko IV. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 2001;41:203-36 https://doi.org/10.1146/annurev.pharmtox.41.1.203
  20. Azumagawa K, Suzuki S, Tanabe T, Wakamiya E, Kawamura N, Tamai H. Neopterin, biopterin, and nitric oxide concentrations in the cerebrospinal fluid of children with central nervous system infections. Brain Dev 2003;25:200-2 https://doi.org/10.1016/s0387-7604(02)00217-6
  21. Murawska-Cialowicz E, Szychowska Z, Trebusiewiz B. Nitric oxide production during bacterial and viral meningitis in children. Int J Clin Lab Res 2000;30:127-31
  22. Fahey TJ III, Tracey KJ, Tekamp-Olson P, Tom Shires G, Cerami A, Sherry B, et al. Macrophage inflammatory protein 1 modulates macrophage function. J Immunol 1992;148:2764-9
  23. Yuji I, Akira I, Toshikazu S. The production of macrophage inflammatory protein-1 alpha in the cerebrospinal fluid at the initial stage of meningitis in children. Pediatr Res 1997;42:788-93 https://doi.org/10.1203/00006450-199712000-00012
  24. Lonnerdal B, Iyer S. Lactoferrin : Molecular structure and biological function. Annu Rev Nutr 1995;15:93-110 https://doi.org/10.1146/annurev.nu.15.070195.000521
  25. Weinberg ED. Iron withholding : a defense against infection and neoplasia. Physiol Rev 1984;64:65-102
  26. Ellison RT, Giehl TJ. Killing of Gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 1991;88:1080-91 https://doi.org/10.1172/JCI115407
  27. Berkhout B, van Wamel JL, Beljaars L, Meijer DK, Visser S, Floris R. Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides. Antiviral Res 2002;55:341-55 https://doi.org/10.1016/S0166-3542(02)00069-4
  28. Beljaars L, Bakker HI, van der Strate BW, Smit C, Meijer DK, Molema G, et al. The antiviral protein human lactoferrin is distributed in the body to cytomegalovirus(CMV) infection-prone cells and tissues. Pharm Res 2002;19:54-62 https://doi.org/10.1023/A:1013655315969
  29. Iigo M, Kuhara T, Ushida Y, Sekine K, Moore MA, Tsuda H. Inhibitory effects of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin Exp Metastasis 1999;17:35-40
  30. Hayash H, Kitamura H, Nakatani Y, Inayama Y, Ito T, Kitamura H. Primary signet-ring cell carcinoma of the lung : histochemical and immunohistochemical characterization. Human Pathol 1999;30:378-83 https://doi.org/10.1016/S0046-8177(99)90111-9
  31. Fujita K, Ohnish T, Sekine K, Iigo M, Tsuda H. Downregulation of 2-amino-3,8-dimethylimidazo 4,5-f quinoxaline (MeIQx)-induced CYP1A2 expression is associated with bovine lactoferrin inhibition of MeIQx-induced liver and colon carcinogenesis in rats. J Cancer Res 2002;93:616-25
  32. Boxer LA, Haak RA, Yang HH, Wolach JB, Whitcomb JA, Baehner RL, et al. Membrane-bound lactoferrin alters the surface properties of polymorphonuclear leukocytes. J Clin Invest 1982;70:1049-57 https://doi.org/10.1172/JCI110692
  33. Talukder R, Takeuchi T, Harada E. Receptor-mediated Transport of lactoferrin into the cerebrospinal fluid via plasma in young calves. J Vet Med Sci 2003;65:957-64 https://doi.org/10.1292/jvms.65.957