References
- Oh, Y. K., M. S. Park, E. H. Seol, and S. Park (2003), Isolation of hydrogen-producing bacteria from granular sludge of upflow anaerobic sludge blanket reactor, Biotech. Bioprocess Eng. 8, 54-57 https://doi.org/10.1007/BF02932899
- Oh, Y. K., Y. J. Kim, J. Y. Park, T. H. Lee, M. S. Kim, and S. Park (2005), Biohydrgen production from carbon monoxide and water by Rhodopseudomonas palustris P4, Biotech. Bioprocess Eng. 10, 270-274 https://doi.org/10.1007/BF02932024
- Lee, K. S., C. M. Kang, and S. Y. Chung (2004), Culture conditions for hydrogen production of Enterobacter cloacae YJ-1, Kor. J. Biotechnol. Bioeng. 19, 446-450
- Schnackenberg, J., R. Schulz, and H. Senger (1993), Characterization and purification of a hydrogenase from eukaryotic green alga Scendesmus obliguus, FFB Lett. 327, 21-24 https://doi.org/10.1016/0014-5793(93)81030-4
- Greenbaum, E. (1990), Hydrogen production by photosynthetic water splitting. In Hydrogen energy progress VIII, T.N. Veziroglu, P. K. Takashashi Eds.; Proceedings 8th WHEC, Hawaii. New York: Pergamon Press, pp743-754
- Banerjee, M., A. Kumar, and H. D. Kumar (1989), Factors regulating nitrogenase activity and hydrogen evolution in Azalia-Anabaena symbiosis, J. Hydrogen Energy. 12, 871-879
- Shi, D. J., M. Brouers, D. O. Hall, and R. J. Rubin (1987), The effects of immobilization on the biochemical, physiological and morphological features of Anabaena azollae, Planta 172, 298-308 https://doi.org/10.1007/BF00398658
- Tsygankov, A.S., L. T. Serebryakova, D. A. Sueshnikov, K. K. Rao, I. N. Gogotov, and D. O. Hall (1997), Hydrogen photo-production by three different nitrogenases in whole cells of Anabaena variabilis and dependence on pH, J. Hydrogen Energy 22, 859-867 https://doi.org/10.1016/S0360-3199(96)00242-X
- Fascetti, E., E. D' addario, O. Todini, and A. Robertiello (1998), Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes, J. Hydrogen Energy 23, 753-760 https://doi.org/10.1016/S0360-3199(97)00123-7
- Krahn, E., K. Schnerder, and K. Muller (1996), Comparative characterization of H, production by the conventional Mo nitrogenase and alternative 'iron-only' nitrogenase of Rhodobater capsulata hap mutants, Appl. Microbiol. Biotechnol. 46, 285-290 https://doi.org/10.1007/s002530050818
- Singh, S. P. and S. C. Srivastava (1991) Isolation of non-sulfur photo-synthetic bacteria strains efficient in hydrogen production at elevated temperatures, J. Hydrogen Energy 16, 404-405
- Tanisho, S., N. Wakao, and Y. Kokako (1983), Biological hydrogen production by Enterobacter aerogenes, J. Chem. Eng. Jpn. 16, 529-530 https://doi.org/10.1252/jcej.16.529
- Kumar, N. and D. Das (1999), Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08, Process Biochem. 35, 589-594
- Tanisho, S., Y. Suzuki, N. Wakoo (1987), Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005, J. Hydrogen Energy 12, 623-627 https://doi.org/10.1016/0360-3199(87)90003-6
- Taguchi, F, J. D. Hang, S. Taguchi, and M. Morimoto (1992), Efficient hydrogen production from starch by a bacterium isolated from termites, J. Ferment. Bioeng. 73, 244-245 https://doi.org/10.1016/0922-338X(92)90172-Q
- Collet, C., N. Adler, J. P. Schwitzguebe, and P. Peringer (2004), Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose, Int. J. Hydrogen Energy 29, 1479-1485 https://doi.org/10.1016/j.ijhydene.2004.02.009
- Lay, J. J., K. S. Fan, J. Chang, and C. H. Ku (2003), Influence of chentical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge, Int. J. Hydrogen Energy 28, 1361-1367 https://doi.org/10.1016/S0360-3199(03)00027-2
- De Vrije, T. and P. A. M. Claassen (2003), Bio-methane & Biohydrogen; Dark hydrogen fermentation, Dutch Biological Hydrogen Foundation, 104-105
- Han, S. K. and H. S. Shin. (2004), Biohydrogen production by anaerobic fermentation of food waste, Int. J. Hydrogen Energy 29, 569-577 https://doi.org/10.1016/j.ijhydene.2003.09.001
- Miller, G. L. (1959), Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31, 426-428 https://doi.org/10.1021/ac60147a030
- Lee, Y. J., T. Miyahara and T. Noike (2002), Effect of pH on microbial hydrogen fermentation, J. Chem. Technol. Biotechnol. 77, 694-698 https://doi.org/10.1002/jctb.623
- Khanal, S. K., W. H. Chen, L. Li, and S. Sung (2004), Biological hydrogen production: effects of pH and intermediate products, Int. J. Hydrogen Energy 29, 1123-1131
- Taguchi, F., N. Mizukami, K. Hasegawa, T. Saito-Taki, and M. Morimoto (1994), Effect of amylase accumulation on hydrogen production by Clostridium beijerinckii, strain AM21B, J. Ferment. Bioeng. 77, 565-567 https://doi.org/10.1016/0922-338X(94)90131-7
- J. van Niel, E. W., P. A. M. Claassen, A. J. M. Stams (2003), Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus, Biotechnol. Bioeng. 81, 255-262 https://doi.org/10.1002/bit.10463
- Van andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure (1985), Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture, Appl. Micro. Biotechnol. 23, 21-26 https://doi.org/10.1007/BF02660113