References
- Chemical and biological conversion of soybean oil for industrial products;Fats for the Future Bagby, M.O.;Calson, K.D.
- J. Am. Oil. Chem. Soc. v.51 Production, chemistry, and commercial applications of various chemicals from castor oil Naughton, F.C. https://doi.org/10.1007/BF00000015
- Acad. Press, Orlando v.41 Microbial oxidation of unsaturated fatty acids, In Advances in Applied Microbiology Hou, C.T.;Laskin, A.I.
- J. Ind. Microbiol. v.7 Production of a new compound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by Pseudomonas sp. PR3 Hou, C.T.;Bagby, M.O. https://doi.org/10.1007/BF01576074
- J. Am. Oil. Chem. Soc. v.75 Fatty acid bioconversions by Pseudomonas aeruginosa PR3 Kuo, T.M.;Manthey, L.K.;Hou, C.T. https://doi.org/10.1007/s11746-998-0240-3
- Chem. Lett. v.25 Unsaturated hydroxy fatty acids, the self-defensive substances in rice plant against rice blast disease Kato, T.;Yamaguchi, Y.;Abe, N.;Uyehara, T.;Nakai, T.;Yamanaka, S.;Harada, N.
- Chem. Lett. v.27 Structure and synthesis of 11,12,13-trihydroxy-9Z, 15Z-octadecadienoic acids Kato, T.;Yamaguchi, Y.;Ohnuma, S.I.;Uyehar, T.;Namai, T.;Kodama, M.;Shiobara, Y.
- Phytochemistry An antifungal compound, 9,12,13-trihydroxy-(E)-10-octadecenoic acid, from Colocasia antiquorum inoculated with Ceratocystis fimbriata Masui, H.;Kondo, T.;Kojima, M.
- J. Ind. Microbiol. v.7 Production of a new compound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by Pseudomonas sp. PR3 Hou, C.T.;Bagby, M.O.
- J. Ind. Microbiol. Biotechnol. v.24 Production of 10,12-dihydroxy-8(E)-octadecenoic acid, an intermediate in the conversion of ricinoleic acid to 7,10,12-trihydroxy-8(E)-octadecenoic acid by Pseudomonas aeruginosa PR3 Kim, H.;Kuo, T.M.;Hou, C.T.
- J. Ind. Microbiol. Biotechnol. v.25 Production of isomeric (9,10,13)-trihydroxy-11E(10E)-octadecenoic acid from linoleic acid by Pseudomonas aeruginosa PR3 Kim, H.;Gardner, H.W.;Hou, C.T. https://doi.org/10.1038/sj.jim.7000041
- Agric. Chem. Biotechnol. v.47 Anti-fungal activity of bioconverted oil extract of linoleic acid and fractionated dilutions against phytopathogens Rhizoctonia solani and Botrytis cinerea Bajpai, V.K.;Shin, S.Y.;Kim, M.J.;Kim, H.R.;Kang, S.C.
- Manual of Clinical Microbiology Murray, P.R.;Baron, E.J.;Pfaller, M.A.;Tenover, F.C. and Yolke R. H.
- Lett. Appl. Microbiol. v.29 In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils Cosentino, S.;Tuberoso, C.I.G.;Pisano, B.;Satta, M.;Mascia, V.;Arzedi, E.;Palmas, F. https://doi.org/10.1046/j.1472-765X.1999.00605.x
- J. Ethnopharmacol. v.85 Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L Karaman, I.;Sahin, F.;Gulluce, M.;Ogutcu, H.;Sengul, M.;Adiguzel, A. https://doi.org/10.1016/S0378-8741(03)00006-0
- Curr. Microbiol. v.43 Production of a novel compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3 Kuo, T.M.;Kim, H.K.;Hou, C.T. https://doi.org/10.1007/s002840010287
- Enzyme Microb. Technol. v.25 Effect of metal ions on the production of isomeric 9, 10, 13 (9,12,13)-trihydroxy-11E (10E)-octadecenoic acid from linoleic acid by Pseudomonas aeruginosa PR3 Kim, H.K.;Jang, Y.S.;Hou, C.T. https://doi.org/10.1016/S0141-0229(99)00018-6