References
- Free Radic. Res. v.31 Endogenous nitric oxide synthesis: biological functions and pathophysiology Bredt, D.S. https://doi.org/10.1080/10715769900301161
- Biochem. J. v.357 Nitric oxide synthases: structure, function and inhibition Alderton, W.K.;Cooper, C.E.;Knowles, R.G. https://doi.org/10.1042/0264-6021:3570593
- Nature v.377 Hypertension in mice lacking the gene for endothelial nitric oxide synthase Huang, P.L.;Huang, Z.;Mashimo, H.;Bloch, K.D.;Moskowitz, M.A.;Bevan, J.A.;Fishman, M.C. https://doi.org/10.1038/377239a0
- Proc. Natl. Acad. Sci. USA v.93 Elevated blood pressures in mice lacking endothelial nitric oxide synthase Shesely, E.G.;Maeda, N.;Kim, H.S.;Desai, K.M.;Krege, J.H.;Laubach, V.E.;Sherman, P.A.;Sessa, W.C.;Smithies, O.
- J. Biol. Chem. v.275 Characterization of the roles of the 594-645 region in human endothelial nitric-oxide synthase in regulating calmodulin binding and electron transfer Chen, P.F.;Wu, K.K. https://doi.org/10.1074/jbc.275.17.13155
- J. Biol. Chem. v.274 Autoinhibition of endothelial nitric-oxide synthase. Identification of an electron transfer control element Nishida, C.R.;Ortiz de Montellano, P.R. https://doi.org/10.1074/jbc.274.21.14692
- J. Biol. Chem. v.272 Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity Ju, H.;Zou, R.;Venema, V.J.;Venema, R.C. https://doi.org/10.1074/jbc.272.30.18522
-
J. Biol. Chem.
v.272
Reciprocal regulation of endothelial nitric-oxide synthase by
$Ca^{2+}$ - calmodulin and caveolin Michel, J.B.;Feron, O.;Sacks, D.;Michel, T. https://doi.org/10.1074/jbc.272.25.15583 - Nature v.392 Dynamic activation of endothelial nitric oxide synthase by Hsp90 Garcia-Cardena, G.;Fan, R.;Shah, V.;Sorrentino, R.;Cirino, G.;Papapetropoulos, A.;Sessa, W.C. https://doi.org/10.1038/33934
- J. Biol. Chem. v.276 Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function Cao, S.;Yao, J.;McCabe, T.J.;Yao, Q.;Katusic, Z.S.;Sessa, W.C.;Shah, V. https://doi.org/10.1074/jbc.M006258200
- Proc. Natl. Acad. Sci. USA v.99 Functional interaction of endothelial nitric oxide synthase with a voltage-dependent anion channel Sun, J.;Liao, J.K.
- Faseb. J. v.15 NOSIP, a novel modulator of endothelial nitric oxide synthase activity Dedio, J.;Konig, P.;Wohlfart, P.;Schroeder, C.;Kummer, W.;Muller-Esterl, W. https://doi.org/10.1096/fj.00-0078com
- J. Biol. Chem. v.269 Identification of covalently bound amino-terminal myristic acid in endothelial nitric oxide synthase Liu, J.;Sessa, W.C.
- Circ. Res. v.72 Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein Sessa, W.C.;Barber, C.M.;Lynch, K.R. https://doi.org/10.1161/01.RES.72.4.921
- J. Biol. Chem. v.277 Subcellular targeting and agonist-induced site-specific phosphorylation of endothelial nitric-oxide synthase Gonzalez, E.;Kou, R.;Lin, A.J.;Golan, D.E.;Michel, T. https://doi.org/10.1074/jbc.M207299200
- J. Biol. Chem. v.279 Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release Fulton, D.;Babbitt, R.;Zoellner, S.;Fontana, J.;Acevedo, L.;McCabe, T.J.;Iwakiri, Y.;Sessa, W.C. https://doi.org/10.1074/jbc.M402155200
- Nature v.399 Regulation of endothelium-derived nitric oxide production by the protein kinase Akt Fulton, D.;Gratton, J.P.;McCabe, T.J.;Fontana, J.;Fujio, Y.;Walsh, K.;Franke, T.F.;Papapetropoulos, A.;Sessa, W.C. https://doi.org/10.1038/21218
- Nature v.399 Activation of nitric oxide synthase in endothelial cells by Akt- dependent phosphorylation Dimmeler, S.;Fleming, I.;Fisslthaler, B.;Hermann, C.;Busse, R.;Zeiher, A.M. https://doi.org/10.1038/21224
- J. Biol. Chem. v.277 Identification of regulatory sites of phosphorylation of the bovine endothelial nitric-oxide synthase at serine 617 and serine 635 Michell, B.J.;Harris, M.B.;Chen, Z.P.;Ju, H.;Venema, V.J.;Blackstone, M.A.;Huang, W.;Venema, R.C.;Kemp, B.E. https://doi.org/10.1074/jbc.M205144200
- J. Biol. Chem. v.276 Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase Michell, B.J.;Chen, Z.;Tiganis, T.;Stapleton, D.;Katsis, F.;Power, D.A.;Sim, A.T.;Kemp, B.E. https://doi.org/10.1074/jbc.C100122200
- Am. J. Physiol. Cell Physiol. v.285 Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases Boo, Y.C.;Jo, H. https://doi.org/10.1152/ajpcell.00122.2003
- Circ. Res. v.93 Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase Jin, Z.G.;Ueba, H.;Tanimoto, T.;Lungu, A.O.;Frame, M.D.;Berk, B.C. https://doi.org/10.1161/01.RES.0000089257.94002.96
- J. Biol. Chem. v.280 Flow shear stress stimulates Gab1 tyrosine phosphorylation to mediate protein kinase B and endothelial nitric-oxide synthase activation in endothelial cells Jin, Z.G.;Wong, C.;Wu, J.;Berk, B.C. https://doi.org/10.1074/jbc.M500294200
- J. Biol. Chem. v.277 Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A Boo, Y.C.;Sorescu, G.;Boyd, N.;Shiojima, I.;Walsh, K.;Du, J.;Jo, H. https://doi.org/10.1074/jbc.M108789200
- Am. J. Physiol. Heart Circ. Physiol. v.283 Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism Boo, Y.C.;Hwang, J.;Sykes, M.;Michell, B.J.;Kemp, B.E.;Lum, H.;Jo, H. https://doi.org/10.1152/ajpheart.00214.2002
- J. Exp. Med. v.193 Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor Vang, T.;Torgersen, K.M.;Sundvold, V.;Saxena, M.;Levy, F.O.;Skalhegg, B.S.;Hansson, V.;Mustelin, T.;Tasken, K. https://doi.org/10.1084/jem.193.4.497
- Mol. Cell v.9 PKA phosphorylation of Src mediates cAMP's inhibition of cell growth via Rap1 Schmitt, J.M.;Stork, P.J. https://doi.org/10.1016/S1097-2765(01)00432-4
- J. Biol. Chem. v.278 Protein kinase A intersects SRC signaling in membrane microdomains Abrahamsen, H.;Vang, T.;Tasken, K. https://doi.org/10.1074/jbc.M211426200
-
J. Biol. Chem.
v.278
Oscillatory shear stress stimulates endothelial production of
$O_2^-$ from$p47^{phox}$ - dependent NAD(P)H oxidases, leading to monocyte adhesion Hwang, J.;Saha, A.;Boo, Y.C.;Sorescu, G.P.;McNally, J.S.;Holland, S.M.;Dikalov, S.;Giddens, D.P.;Griendling, K.K.;Harrison, D.G.;Jo, H. https://doi.org/10.1074/jbc.M305150200 - Proc. Natl. Acad Sci. USA v.89 Mutations in the catalytic subunit of cAMP-dependent protein kinase result in unregulated biological activity Orellana, S.A.;McKnight, G.S.
- J. Biol. Chem. v.262 Inhibition of intracellular cAMP-dependent protein kinase using mutant genes of the regulatory type I subunit Clegg, C.H.;Correll, L.A.;Cadd, G.G.;McKnight, G.S.
- EMBO J. v.14 Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intraand intermolecular interactions Erpel, T.;Superti-Furga, G.;Courtneidge, S.
- Free Radic. Biol. Med. v.35 Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase Boo, Y.C.;Sorescu, G.P.;Bauer, P.M.;Fulton, D.;Kemp, B.E.;Harrison, D.G.;Sessa, W.C.;Jo, H. https://doi.org/10.1016/S0891-5849(03)00397-6
- Biochemistry (Mosc) v.65 Kinases of the Src family: structure and functions Tatosyan, A.G.;Mizenina, O.A.
-
J. Biol. Chem.
v.271
Phosphorylation of caveolin by Src tyrosine kinases -
$The\;{\alpha}$ - isoform of caveolin is selectively phosphorylated by v-Src in vivo Li, S.W.;Seitz, R.;Lisanti, M.P. https://doi.org/10.1074/jbc.271.7.3863 - Curr. Opin. Neurobiol. v.7 PKA isoforms, neural pathways, and behaviour: making the connection Brandon, E.P.;Idzerda, R.L.;McKnight, G.S. https://doi.org/10.1016/S0959-4388(97)80069-4
- J. Vasc. Res. v.34 Calcium-dependent and calcium-independent activation of the endothelial NO synthase Fleming, I.;Bauersachs, J.;Busse, R. https://doi.org/10.1159/000159220
- FEBS Lett. v.477 Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration Dimmeler, S.;Dernbach, E.;Zeiher, A.M. https://doi.org/10.1016/S0014-5793(00)01657-4
- J. Biol. Chem. v.275 Endothelial nitric-oxide synthase (type III) is activated and becomes calcium independent upon phosphorylation by cyclic nucleotide-dependent protein kinases Butt, E.;Bernhardt, M.;Smolenski, A.;Kotsonis, P.;Frohlich, L.G.;Sickmann, A.;Meyer, H.E.;Lohmann, S.M.;Schmidt, H.H. https://doi.org/10.1074/jbc.275.7.5179
- FEBS Lett. v.443 AMP-activated protein kinase phosphorylation of endothelial NO synthase Chen, Z.P.;Mitchelhill, K.I.;Michell, B.J.;Stapleton, D.;Rodriguez-Crespo, I.;Witters, L.A.;Power, D.A.;Ortiz de Montellano, P.R.;Kemp, B.E. https://doi.org/10.1016/S0014-5793(98)01705-0
-
Circ. Res.
v.88
Phosphorylation of Thr(495) regulates
$Ca(^{2+})$ /calmodulin-dependent endothelial nitric oxide synthase activity Fleming, I.;Fisslthaler, B.;Dimmeler, S.;Kemp, B.E.;Busse, R. https://doi.org/10.1161/hh1101.092677 - Circ. Res. v.78 Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells Ayajiki, K.;Kindermann, M.;Hecker, M.;Fleming, I.;Busse, R. https://doi.org/10.1161/01.RES.78.5.750
- Circ. Res. v.79 Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress Corson, M.A.;James, N.L.;Latta, S.E.;Nerem, R.M.;Berk, B.C.;Harrison, D.G. https://doi.org/10.1161/01.RES.79.5.984
- J. Biol. Chem. v.271 Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1 Garcia-Cardena, G.;Fan, R.;Stern, D.F.;Liu, J.;Sessa, W.C. https://doi.org/10.1074/jbc.271.44.27237
-
Circ. Res.
v.82
$Ca^{2+}$ -independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress Fleming, I.;Bauersachs, J.;Fisslthaler, B.;Busse, R. https://doi.org/10.1161/01.RES.82.6.686 - J. Biol. Chem. v.277 Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway Thomas, S.R.;Chen, K.;Keaney, J.F. Jr. https://doi.org/10.1074/jbc.M109107200
- Circ. Res. v.87 Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells Haynes, M.P.;Sinha, D.;Russell, K.S.;Collinge, M.;Fulton, D.;Morales-Ruiz, M.;Sessa, W.C.;Bender, J.R. https://doi.org/10.1161/01.RES.87.8.677
- J. Biol. Chem. v.278 Src kinase mediates phosphatidylinositol 3-kinase/ Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen Haynes, M.P.;Li, L.;Sinha, D.;Russell, K.S.;Hisamoto, K.;Baron, R.;Collinge, M.;Sessa, W.C.;Bender, J.R. https://doi.org/10.1074/jbc.M210828200
- J. Biol. Chem. v.277 Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS) Tanimoto, T.;Jin, Z.G.;Berk, B.C. https://doi.org/10.1074/jbc.M204764200
- J. Biol. Chem. v.276 Regulation of Akt/PKB activation by tyrosine phosphorylation Chen, R.;Kim, O.;Yang, J.;Sato, K.;Eisenmann, K.M.;McCarthy, J.;Chen, H.;Qiu, Y. https://doi.org/10.1074/jbc.C100271200
- J. Mol. Cell. Cardiol. v.37 The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease Oudit, G.Y.;Sun, H.;Kerfant, B.G.;Crackower, M.A.;Penninger, J.M.;Backx, P.H. https://doi.org/10.1016/j.yjmcc.2004.05.015
- Am. J. Physiol. v.275 Phosphatidylinositol 3-kinase gamma mediates shear stress-dependent activation of JNK in endothelial cells Go, Y.M.;Park, H.;Maland, M.C.;Darley-Usmar, V.M.;Stoyanov, B.;Wetzker, R.;Jo, H.