Facial Synthesis of Versatile Chiral Norbornenes as Leukotriene D4 Antagonists from D-glucose

Yoongho Lim ${ }^{1}$ and Dongsoo Koh*
Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Korea
${ }^{1}$ Bio/Molecular Informatics Center, Department of Applied Biology and Chemistry, Konkuk University, Seoul 143-701, Korea

Received May 3, 2005; Accepted June 20, 2005

Chiral dienophile 5 was synthesized from D-glucose by consecutive diisopropylidenation, partial deprotection, diol cleavage, and Wittig reactions. Under thermal conditions, asymmetric Diels-Alder reaction between chiral dienophile and cyclopentadiene gave four possible chiral norbornenes stereoisomers whose absolute configurations were determined through CADD and NMR.

Key words: Asymmetric reaction, Chiral Dienophiles, Diels-Alder reaction, Stereochemistry.

As a programmed project for the development of leukotriene D4 receptor antagonists for use as anti-asthmatic agents, extracts from higher plants were screened to evaluate the properties of leukotriene D 4 receptor antagonists, ${ }^{1-7}$ and, after activity-guided fractionation, two final candidates were isolated from Sanguisorba officinalis and Bupueurum falcatum. Both candidates contained sugar moiety as a potential component in the molecules. ${ }^{6,7)}$ Optically pure norbornenes have been focused as antagonists for prostaglandines, thromboxanes and leukotrienes which are chemical mediators derived from phospholipids cascade. ${ }^{8-10}$ We attempted to synthesize optically pure norbornenes which have sugar moiety as leukotriene D4 receptor antagonists. Here, we report the facial synthesis of chiral norbornenes from the readily available D-glucose.
D-Glucose was transformed into hydroxy aldehyde 4 through a three-steps pathway of diisopropylidenation, partial deprotection, and diol cleavage. Wittig reaction between hydroxy aldehyde 4 and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$ was performed to give chiral dienophile 5. Asymmetric Diels-Alder reaction between chiral dienophile and cyclopentadiene under thermal condition, afforded a mixture of four diastereoisomeric norbornenes $\mathbf{7 - 1 0}$. Separation of the four pure norbornene derivatives was made by flash column chromatography and their absolute configurations were assigned through NMR and CAMM

Materials and Methods

General methods. Optical rotations were measured with a

[^0]Abbreviations: TLC, thin layer chromatography; NMR, nuclear magnetic resonance; NOESY, Nuclear Overhauser and Exchange Spectroscopy; CAMM, Computer Aided Molecular Modeling.

Perkin-Elmer model 141 polarimeter at $25^{\circ} \mathrm{C}$ unless otherwise noted. Melting points were determined using a ThomasHoover Unimelt apparatus. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded using a Bruker Avance 400 spectrometer system (9.4 T) at $298^{\circ} \mathrm{K}$. Splitting patterns are designated as: s , singlet; d , doublet; dd, double doublet; t , triplet; m , multiplet.

TLC was performed on precoated glass plates of Silica Gel $60_{\mathrm{F}}-254$ (E. Merck), and compounds on the plate were detected by spraying with 10% aq $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution with subsequent heating or irradiation of UV-light. Flash-column chromatography was performed on 230-300 mesh silica gel as described in the literature. ${ }^{11)}$
Synthesis of monoacetone glucose 3. Diacetone-Dglucose ${ }^{12} \mathbf{2}(2 \mathrm{~g}, 7.68 \mathrm{mmol}$) was dissolved in 50% aqueous acetic acid $(20 \mathrm{ml})$ and stirred at room temperature for 10 h . The aqueous solvent was evaporated in vacuo to give a white residue. The residue was partitioned into methylenechloride ($70 \mathrm{~m} l$) and water ($20 \mathrm{~m} l$), and the aqueous layer was washed with methylenechloride $(30 \mathrm{~m} l)$. The combined organic layers were successively washed with saturated NaHCO_{3} solution and brine, and dried over MgSO_{4}. Filtration and evaporation gave a white solid of monoacetone glucose $\mathbf{3},(1.75 \mathrm{~g}, 87.5 \%)$. $\mathrm{mp} 158-159^{\circ} \mathrm{C}$, ($\mathrm{lit}^{13} \mathrm{mp} 160-161^{\circ} \mathrm{C}$). $[\alpha]_{\mathrm{D}} ;-12.7^{\circ}$, (c 1.2, $\mathrm{H}_{2} \mathrm{O}$), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) ; \delta 5.76(\mathrm{~d}, 1 \mathrm{H}, J 3.7 \mathrm{~Hz})$, 4.37 (d, 1H, J3.7 Hz), 4.10 (d, 1H, J2.6 Hz), 3.92 (dd, 1H, J $8.5,2.6 \mathrm{~Hz}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, 1 \mathrm{H}, J 11.5,3.1 \mathrm{~Hz}), 3.50$ (dd, $1 \mathrm{H}, J 11.6,6.0 \mathrm{~Hz}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) ; \delta 112.8,106.5,86.6,81.4,75.7,70.5$, 65.3, 27.1, 26.5

Synthesis of hydroxy aldehyde 4. Monoacetone glucose 3 $(1.70 \mathrm{~g}, 7.73 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(25 \mathrm{~m} l)$ to give a clear solution, and the temperature was cooled down to $0^{\circ} \mathrm{C}$. Aqueous NaIO_{4} solution ($3.31 \mathrm{~g}, 15.46 \mathrm{mmol}$ in 25 ml H H) was added to the above cold solution and stirred for 3 h at room temperature. Precipitate was filtered, and the filtrate was evaporated under reduced pressure. The resulting residue was
partitioned into ethyl acetate ($50 \mathrm{~m} l$) and water ($30 \mathrm{~m} l$), and the organic layer was washed with brine and dried over MgSO_{4}. Filtration and evaporation afforded syrup of aldehyde $4(1.01 \mathrm{~g}, 69.7 \%)$, which was used for subsequent reaction without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta$ $9.56(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{dd}, 1 \mathrm{H}, J 3.7,15.8 \mathrm{~Hz}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.26$ $(\mathrm{m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 192.0,112.2,105.1,86.7,84.6,83.2$, 26.8, 26.6

Synthesis of dienophile 5. Hydroxy aldehyde 4 (1.01 g , 5.37 mmol) and methyl (triphenylphosphoranylidene)acetate $(2.69 \mathrm{~g}, 8.06 \mathrm{mmol})$ were dissolved in methylene chloride (50 $\mathrm{m} /$) and the reaction mixture was stirred for 7 h at room temperature. TLC showed one major ($\mathrm{R}_{f} 0.47,1: 1 \mathrm{EtOAc}$ hexanes), one minor ($\mathrm{R}_{f} 0.35$), and a by-product triphenyl oxide $\left(\mathrm{R}_{f} 0.15\right)$. Solvent was removed under reduced pressure. Diethyl ether was added to the residue, and the insoluble byproduct triphenylphospine oxide was filtered. Filtration and concentration of the filtrates afforded syrup, which was purified by flash chromatography ($1: 1 \mathrm{EtOAc}$-hexane), to give syrup of trans dienophile 5 ($787 \mathrm{mg}, 64 \%$). $[\alpha]_{\mathrm{D}} ;-42.2^{\circ}$, (c $\left.1.8, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 6.96(\mathrm{dd}, 1 \mathrm{H}, J$ $4.4,15.8 \mathrm{~Hz}), 6.26(\mathrm{dd}, 1 \mathrm{H}, J 1.9,15.8 \mathrm{~Hz}), 5.99(\mathrm{~d}, 1 \mathrm{H}, J 3.8$ $\mathrm{Hz}), 4.84(\mathrm{dd}, 1 \mathrm{H}, J 4.5,2.5 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J 3.6 \mathrm{~Hz}), 4.24$ ($\mathrm{s}, 1 \mathrm{H}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 166.8,141.4,123.5,112.1$, 104.7, 85.0, 79.7, 76.0, 51.9, 26.8, 26.2

Synthesis of norbornene derivatives $\mathbf{7 - 1 0}$. To a stirred solution of trans dienenophile $5(1.4 \mathrm{~g}, 5.7 \mathrm{mmol})$ in toluene ($20 \mathrm{~m} l$) was added catalytic amount of hydroquinone (5 mg) and cyclopentadiene 6 (freshly distilled from dicyclopentadiene, 3.1 ml), and the mixture was refluxed for 15 h . TLC showed that the starting material dienenophile 5 was absent. Solvent was evaporated in vacuo to give a brown syrup, which was charged onto a column of silica gel eluted with $1: 7 \mathrm{EtOAc}-$ hexane to afford two major products $7(271 \mathrm{mg}, 15.3 \%)$ and 9 ($672 \mathrm{mg}, 38.0 \%$), and two minor products 8 ($97 \mathrm{mg}, 5.5 \%$) and 10 ($62 \mathrm{mg}, 3.5 \%$).
Compound 7. $\mathrm{R}_{f} 0.48$ ($1: 3 \mathrm{EtOAc}$ - hexanes), ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.49(\mathrm{ddd}, 1 \mathrm{H}, J 1.5$, $\left.1.7,9.1 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{syn}}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.54(\mathrm{~d}, 1 \mathrm{H}, J 9.1 \mathrm{~Hz}$, $\mathrm{H}_{7 \text { anti }}$), 1.99 (ddd, $1 \mathrm{H}, J 1.4,4.8,11.0 \mathrm{~Hz}, \mathrm{H}_{6}$), 2.57 (dd, $1 \mathrm{H}, J$ $\left.4.8,8.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.71(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.94\left(\mathrm{dd}, 1 \mathrm{H}, J 2.1,11.0 \mathrm{~Hz}, \mathrm{H}_{8}\right), 4.14(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{9}\right), 4.58\left(\mathrm{~d}, 1 \mathrm{H}, J 3.7 \mathrm{~Hz}, \mathrm{H}_{10}\right), 5.96\left(\mathrm{~d}, 1 \mathrm{H}, J 3.7 \mathrm{~Hz}, \mathrm{H}_{11}\right)$, $6.06\left(\mathrm{dd}, 1 \mathrm{H}, J 2.8,5.6 \mathrm{~Hz}, \mathrm{H}_{3}\right), 6.30(\mathrm{dd}, 1 \mathrm{H}, J 3.2,5.6 \mathrm{~Hz}$, H_{2}), ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}) ; \delta .176 .9,139.0,134.4,111.2$, 105.1, 84.8, 84.7, 74.9, 52.6, 48.2, 45.4, 44.6, 44.5, 42.6, 26.8, 26.1.

Compound 8. $\mathrm{R}_{f} 0.27$ ($1: 3 \mathrm{EtOAc}$ - hexanes), ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.39 (ddd, $1 \mathrm{H}, J 1.6$, $\left.1.8,9.9 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{syn}}\right), 1.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.81(\mathrm{~d}, 1 \mathrm{H}, J 8.6 \mathrm{~Hz}$, $\mathrm{H}_{7 \text { anti }}$), 2.07 (ddd, $\left.1 \mathrm{H}, J 1.7,4.4,4.4 \mathrm{~Hz}, \mathrm{H}_{6}\right), 2.75(\mathrm{~m}, 1 \mathrm{H}, J 1.6$ $\mathrm{Hz}, \mathrm{H}_{1}$), $3.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.25$ (dd, $1 \mathrm{H}, J 4.2,4.4 \mathrm{~Hz}, \mathrm{H}_{5}$), $3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 4.17(\mathrm{dd}, 1 \mathrm{H}, J 2.5,4.4$
$\left.\mathrm{Hz}, \mathrm{H}_{8}\right), 4.49\left(\mathrm{~d}, 1 \mathrm{H}, J 3.8 \mathrm{~Hz}, \mathrm{H}_{10}\right), 5.92(\mathrm{~d}, 1 \mathrm{H}, J 3.8 \mathrm{~Hz}$, H_{11}), $6.04\left(\mathrm{dd}, 1 \mathrm{H}, J 2.7,5.6 \mathrm{~Hz}, \mathrm{H}_{3}\right), 6.28(\mathrm{dd}, 1 \mathrm{H}, J 3.1,5.6$ $\left.\mathrm{Hz}, \mathrm{H}_{2}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta .177 .3,138.4,134.7$, 111.2, 104.7, 84.7, 83.2, 76.4, 52.1, 48.3, 46.9, 45.4, 46.0, 41.9, 26.7, 26.1 .

Compound 9. $\mathrm{R}_{f} 0.36$ ($1: 3$ EtOAc- hexanes), ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.38(\mathrm{dd}, 1 \mathrm{H}, J 8.9$ $\mathrm{Hz}, \mathrm{H}_{7 \text { anti }}$), $1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58(\mathrm{ddd}, 1 \mathrm{H}, J 1.2,1.8,8.9 \mathrm{~Hz}$, $\mathrm{H}_{7 \mathrm{syn}}$), 1.87 (dd, $1 \mathrm{H}, J 1.7,5.2 \mathrm{~Hz}, \mathrm{H}_{5}$), 2.58 (ddd, $1 \mathrm{H}, J 3.4$, $5.2,10.9 \mathrm{~Hz}, \mathrm{H}_{6}$), $3.11\left(\mathrm{dd}, 1 \mathrm{H}, J 1.8,3.4 \mathrm{~Hz}, \mathrm{H}_{1}\right), 3.25$ (m, $\left.1 \mathrm{H}, \mathrm{H}_{4}\right), 3.56\left(\mathrm{dd}, 1 \mathrm{H}, J 2.2,10.9 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, J 3.6 \mathrm{~Hz}, \mathrm{H}_{10}\right), 5.94(\mathrm{~d}, 1 \mathrm{H}, J 3.6$ $\mathrm{Hz}, \mathrm{H}_{11}$), 6.23 (dd, 1H, $J 1.7,4.4 \mathrm{~Hz}, \mathrm{H}_{3}$), 6.23 (dd, 1H, $J 1.8$, $4.4 \mathrm{~Hz}, \mathrm{H}_{2}$), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$); $\delta .177 .3,136.5$, 135.9, 111.4, 105.0, 84.9, 84.5, 75.1, 52.8, 48.0, 47.5, 45.6, 44.5, 42.9, 27.0, 26.4.

Compound 10. $\mathrm{R}_{f} 0.22$ (1:3 EtOAc- hexanes), ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.44 (ddd, $1 \mathrm{H}, J 1.7,1.7,8.6 \mathrm{~Hz}, \mathrm{H}_{7 \mathrm{syn}}$), $1.67(\mathrm{~d}, 1 \mathrm{H}, J 8.6 \mathrm{~Hz}$, $\mathrm{H}_{7 \mathrm{ant}}$), $2.28\left(\mathrm{dd}, 1 \mathrm{H}, J 1.5,4.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 2.80(\mathrm{ddd}, 1 \mathrm{H}, J 3.4$, $\left.4.5,9.9 \mathrm{~Hz}, \mathrm{H}_{6}\right), 2.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.52(\mathrm{dd}$, $\left.1 \mathrm{H}, J 2.6,9.9 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{9}\right)$, $4.49\left(\mathrm{~d}, 1 \mathrm{H}, J 3.8 \mathrm{~Hz}, \mathrm{H}_{10}\right), 5.85\left(\mathrm{~d}, 1 \mathrm{H}, J 3.8 \mathrm{~Hz}, \mathrm{H}_{11}\right), 6.12$ (dd, 1H, J 2.8, $5.6 \mathrm{~Hz}, \mathrm{H}_{2}$), $6.29\left(\mathrm{dd}, 1 \mathrm{H}, J 3.3,5.6 \mathrm{~Hz}, \mathrm{H}_{3}\right.$), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta .176 .3,137.5,134.8,111.3$, 104.3, 85.4, 83.9, 75.3, 52.1, 48.1, 47.8, 47.4, 44.4, 42.2, 26.6, 26.1.

Results and Discussion

Partial cleavage of two isopropylidene groups in diacetone glucose 2 was accomplished by treatment with 50% aqueous acetic acid solution, affording monoacetone glucose 3 at 87.5% yield (Fig. 1). Diol in monoacetone glucose 3 was cleaved via sodium periodate ${ }^{14)}$ oxidation to give hydroxy aldehyde 4. Wittig olefination was performed through reaction between hydroxy aldehyde 4 and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$ as described in the literature. ${ }^{15)}$ The crude product of Wittig reaction showed trans configuration at newly formed $\mathrm{C}=\mathrm{C}$ double bond $(J 15.8 \mathrm{~Hz})$ as a major, which was contaminated with cis minor ($J 11.6 \mathrm{~Hz}$) product by NMR. When dichloromethane solvent was used in the reaction, trans isomer was obtained as a major product. However when methanol solvent was employed, cis isomer was increased to 30% yield. After flash chromatography ($1: 1$ EtOAchexanes) separation, trans dienophile 5 was obtained at 64% yield. Diels-Alder reaction between dienophile 5 and cyclopentadiene 6 under thermal conditions (refluxing toluene) gave all possible four stereoisomers, two major products 7 ($271 \mathrm{mg}, 15.3 \%$) and 9 ($672 \mathrm{mg}, 38.0 \%$), and two minor products $\mathbf{8}(97 \mathrm{mg}, 5.5 \%)$ and $\mathbf{1 0}$ (62 mg, 3.5\%) (Fig. 2).
For the convenience of discussion, the proton adjacent to the carboxylate group is assigned as H_{5}, and the proton neighboring the sugar group is assigned as H_{6} in all norbornene derivatives. $\mathrm{H}_{7 \text { syn }}$ is in the same side, whereas $\mathrm{H}_{7 \text { anti }}$

2

Fig. 1. Synthetic methods for chiral dienophoile 5 from Dglucose.
is in the opposite side, of norbornene double bond. Stereochemistry of each norbornene derivative was determined as follow. Discriminations between endo products and exo could be easily made, because the endo products $(\mathbf{7}, 8)$ have H_{5} in exo mode and H_{6} in endo mode. Therefore, H_{5} was in the same direction with $\mathrm{H}_{7 \text { antit }}$, which showed NOE signals between H_{5} and H_{7} anti. However, H_{6} showed NOE signals with $\mathrm{H}_{7 \text { anti }}$ in exo products $(\mathbf{9}, \mathbf{1 0})$. Therefore, norbornenes 7 and $\mathbf{8}$ were assigned as endo, and $\mathbf{9}$ and $\mathbf{1 0}$ were assigned as exo. Notably, H_{5} in endo products showed relative down-field chemical shift compared to H_{5} chemical shifts in exo products ${ }^{19}$ in norbornene system. Good agreements were observed between endo products $7\left(\delta 2.57 \mathrm{ppm}, \mathrm{H}_{5}\right)$ and $\mathbf{8}(\delta 3.25 \mathrm{ppm}$, H_{5}), and exo products $\mathbf{9}\left(\delta 1.87 \mathrm{ppm}, \mathrm{H}_{5}\right)$ and $\mathbf{1 0}(\delta 2.28 \mathrm{ppm}$, H_{5}).
Distinguishing absolute stereochemistriry between two endo 7 and 8, and two exo 9 and 10 was difficult. To discriminate 7 from 8, distance between H_{5} and H_{9} was calculated by CAMM. The distances $\mathrm{D}\left(\mathrm{H}_{5}-\mathrm{H}_{9}\right)$ in norbornenes 7 and $\mathbf{8}$ are 2.60 and $4.70 \AA$, respectively. NOESY spectrum of 7 showed a strong NOE between signals H_{5} and H_{9}, whereas that of $\mathbf{8}$ showed no NOE between signals H_{5} and H_{9}. In the case of differentiation between $\mathbf{9}$ and $\mathbf{1 0}$, distances between H_{1} and H_{9} were adopted. The distances $\mathrm{D}\left(\mathrm{H}_{1}-\mathrm{H}_{9}\right)$ calculated by CAMM of $\mathbf{9}$ and $\mathbf{1 0}$ were 5.09 and $2.91 \AA$, respectively. NOESY spectrum of $\mathbf{1 0}$ showed strong NOE between signals H_{1} and H_{9}, whereas none was observed 9 . Based on the above results, stereoisomers of norbornenes 7 and $\mathbf{8}$ were assigned as (endo, re) and (endo, si), and those of 9 and 10 were assigned as (exo, si) and (exo, re), respectively. Sum of the si products ($\mathbf{8}+\mathbf{9}, 43.5 \%$) was higher than that of the re products ($\mathbf{7}+\mathbf{1 0}, 18.8 \%$). This stereochemical outcome

7 (Endo, re)

8 (Endo, si)

10 (Exo, re)

Fig. 2. Asymmetric Diel-Alder reaction and formation of versatile chiral norvornenes.

Unfavored transition state B

Fig. 3. Two transition states of asymmetric Diel-Alder reaction.
could be rationalized by Trost model. ${ }^{17)}$ Two transition states are suggested to explain the stereochemical route of the asymmetric Diels-Alder reaction (Fig. 3). Transition state A is considered to be more favorable than transition state B , because in the transition state B, bulky sugar moiety is congested at the double bond where Diels-Alder reaction occurs. Adoptation of the more favorable transition state A affords a less crowded $s i$-face attack as opposed to a more crowed re-face attack, resulting in si products as the major producrs.
The relatively low $J_{5,6}$ coupling constants $(4.2-5.2 \mathrm{~Hz})$ in all norbornenes 7-10 showed that H_{5} and H_{6} are in the trans relationship ($J_{5,6} 9.3 \mathrm{~Hz}$ in cis norbornene), ${ }^{18)}$ an indication that the trans geometry of the starting dienophile 5 has been preserved in the carbon-carbon bond formations at C5 and C6
where Diels-Alder reaction occurred. No cis-trans isomerization occurred in dienophile 5 under the thermal Diels-Alder reaction.

Acknowledgments

This study was supported by a grant from Dongduk Women's University

References

1. Park, K. H., Park J., Koh, D. and Lim Y. (2002) Effect of Saikosaponin-A, a triterpenoid glycoside, isolated from Bupueurum falcatum on experimental allergic asthma. Phytotheraphy Research 16, 359-363.
2. Park, K. H, Koh, D., Park, J, Kim, K. and Lim Y. (2004) Anti-allergic activity of a disaccharide isolated from Sanguisorba officinalis. Phytotherapy Research. 18, 658-662
3. Koh, D., Park, K. H and Lim Y. (2001) Synthesis and biological activities of leukotriene D4 antagonists predicted from quantitatively structure-activity relationship calculation. Agric. Chem. Biotechnol. 44, 35-38.
4. Koh, D., Park, K. H., Lee, H., Jung, J. and Lim Y. (2001) Resveratrol derivatives showing the leukotriene D4 antagonism. Agric. Chem. Biotechnol. 44, 32-34.
5. Koh, D., Park, K. H., S., Lee, Jung, I., Kim, K. M, Lee, C., Kim, K., and Lim Y. (2001) Anti-allergic and anti-asthmatic activity of Helioscopinin-A, a polyphenol compound, isolated from Euphorbia helioscopia. J Mocrobiol. Biotechnol. 11, 138-142.
6. Koh, D., Park, K. H and Lim Y. (2001) Anti-allergic compound with Leukotriene D4 Antagonism isolated from Puerariae radix.J. Korean Soc. Agric. Chem. Biotechnol. 44, 38-39.
7. Koh, D., Park, K. H., Lee, H., Jung, J., Cho, S. K. and Lim Y. (2000) Quantitatively Structure-activity Relationships to Develop Anti-asrhmatic Drugs. Agric. Chem. Biotechnol. 43, 277-280.
8. Ohitani, E., Matsuura, T., Watanabe, F. and Narisada, M (1991) Enantioselective synthesis of S-1452, an orally active potent thromboxane A2 receptor antagonist. J. Org. Chem. 56, 2122-2127.
9. Rokach, J., Lau, C. -K., Zambony, R. and Guindon, Y. (1981) A C-Glycoside route to leukotrienes. Tetrahedron Lett. 22, 6313-6316.
10. Surman, M. D., Mulvihill, M. J. and Miller, M. J. (2002) Regio- and stereoselective ring openings of 3-aza-2-oxabi-cyclo[2.2.1]hept-5-ene systems with copper catalyst-modified grignard reagents: Application to the synthesis of an inhibitor of 5-lipoxygenase. J. Org. Chem. 67, 4115-4121.
11. Still, W. C., Kahn. M. and Mitra, A. (1978) Rapid chromatographic technique for preparative separation with moderate resolution. J. Org. Chem. 43, 2923-2925.
12. Stevene, J. D. (1972) In Methods in carbohydrate chemistry, vol. VI , 123-129, Academic Press Inc. New York.
13. Schmodt, O. T. (1963) In Methods in carbohydrate chemistry, vol. II , 318-325, Academic Press Inc. New York.
14. Dunlap, N. K., Mergo, W., Jones, J. M. and Carrick, D. A. (2002) General procedure for a one-pot oxidative cleavage/ Wittig reaction of glycols. Tetrahedron Lett. 43, 3923-3925.
15. Tulshian, D., Doll, R. and Stansberry, M. F. (1991) Total synthesis of Griseolic acid derivatives from D-glucose. J. Org. Chem. 56, 6819-6822.
16. Horton, D. and Koh, D. (1993) Stereocontrol in Diels-Alder cycloaddition to unsaturated sugars: Reactivities of acyclic 7 -carbon trans dienophiles derived from aldopentoses. Carbohydr. Res. 250, 249-260.
17. Trost, B. M., Lynch, J. and Renaut, P. (1985) Diastereoselectivity of a [3+2] annulation. On the question of a dipole effect on a stereoselectivity of olefin addition, Tetrahedron Lett. 26, 6313-6316.
18. Horton, D., Koh, D. and Takagi, Y. (1993) Stereocontrol in Diels-Alder cycloaddition to unsaturated sugars: Reactivities of cis dienophiles with cyclopentadiene. Carbohydr. Res. 250, 261-274.

[^0]: *Corresponding author
 Phone: +82-2-940-4512; Fax: +82-2-940-4193
 Email: dskoh@dongduk.ac.kr

