Expression of Antioxidant Isoenzyme Genes in Rice under Salt Stress and Effects of Jasmonic Acid and ${\gamma}$-Radiation

  • Kim, Jin-Hong (Division of Radiation Application Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Chung, Byung-Yeoup (Division of Radiation Application Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Baek, Myung-Hwa (Division of Radiation Application Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Wi, Seung-Gon (Division of Radiation Application Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Yang, Dae-Hwa (Division of Radiation Application Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Myung-Chul (National Institute of Agricultural Biotechnology, R.D.A.) ;
  • Kim, Jae-Sung (Division of Radiation Application Research, Korea Atomic Energy Research Institute (KAERI))
  • Published : 2005.03.31

Abstract

Analysis of chlorophyll (Chl) fluorescence implicated treatment of 40 mM NaCl decreased maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), actual quantum yield of PSII (${\Phi}_{PSII}$), and photochemical quenching (qP) in rice, but increased non-photochemical quenching (NPQ). Decreases in Fv/Fm, ${\Phi}_{PSII}$, and qP were significantly alleviated by $30\;{\mu}M$ jasmonic acid (JA), while NPQ increase was enhanced. Transcription levels of antioxidant isoenzyme genes were differentially modulated by NaCl treatment. Expression of cCuZn-SOD2 gene increased, while those of cAPXb, CATb, and CATc genes decreased. JA prevented salt-induced decrease of pCuZn-SOD gene expression, but caused greater decrease in mRNA levels of cAPXa and Chl_tAPX genes. Investigation of vacuolar $Na^+/H^+$ exchanger (NHX2) and 1-pyrroline-5-carboxylate synthetase (P5CS) gene expressions revealed transcription level of NHX2 gene was increased by JA, regardless of NaCl presence, while that of P5CS gene slightly increased only in co-presence of JA and NaCl. Unlike JA, ${\gamma}$-radiation rarely affected expressions of antioxidant isoenzyme, NHX2, and P5CS genes, except for increase in mRNA level of Chl_tAPX and decrease in that of pCuZn-SOD. These results demonstrate enhanced salt-tolerance in JA-treated rice seedlings may be partly due to high transcription levels of pCuZn-SOD, NHX2, and P5CS genes under salt stress.

Keywords

References

  1. Salt tolerance;The Arabidopsis Book Xiong, L.;Zhu, J.K.;Somerville, C.R.(ed.);Meyerowitz, E.M.(ed.) https://doi.org/10.1199/tab.0048
  2. Biochem. Soc. Trans. v.24 Oxidative stress and responses in Arabidopsis thaliana and Oryza sativa subjected to chilling and salinity stress Burdon, R.H.;O'Kane, D.;Fadzillah, N.;Gill, V.;Boyd, P.A.;Finch, R.R. https://doi.org/10.1042/bst0240469
  3. Plant Physiol. v.113 Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts Shen, B.;Jensen, R.G.;Bohnert, H. https://doi.org/10.1104/pp.113.4.1177
  4. Plant Cell v.11 A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification Tsugane, K.;Kobayashi, K.;Niwa, Y.;Ohba, Y.;Wada, K.;Kobayashi, H. https://doi.org/10.1105/tpc.11.7.1195
  5. Plant Physiol. v.122 Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress Hong, Z.;Lakkineni, K.;Zhang, Z.;Verma, D.P.S. https://doi.org/10.1104/pp.122.4.1129
  6. Trends Plant Sci. v.6 Plant salt tolerance Zhu, J.K. https://doi.org/10.1016/S1360-1385(00)01838-0
  7. Curr. Opin. Plant Biol. v.1 Plant stress adaptations, making metabolism move Bohnert, H.J.;Sheveleva, E. https://doi.org/10.1016/S1369-5266(98)80115-5
  8. Plant Sci. v.135 Antioxidant responses of rice seedlings to salinity stress Dionisio-Sese, M.L.;Tobita, S. https://doi.org/10.1016/S0168-9452(98)00025-9
  9. Plant Sci. v.165 Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - differential response in salt-tolerant and sensitive varieties Vaidyanathan, H.;Sivakumar, P.;Chakrabarty, R.;Thomas, G. https://doi.org/10.1016/j.plantsci.2003.08.005
  10. Plant Sci. v.164 The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritime L. Bor, M.;Ozdemir, F.;Turkan, I. https://doi.org/10.1016/S0168-9452(02)00338-2
  11. Science v.285 Salt tolerance conferred by overexpression of a vacuolar $Na^+/H^+$ antiport in Arabidopsis Apse, M.P.;Aharon, G.S.;Snedden, W.A.;Blumwald, E. https://doi.org/10.1126/science.285.5431.1256
  12. Biochim. Biophys. Acta v.1446 Molecular cloning and expression of the $Na^+/H^+$ exchanger gene in Oryza sativa Fukuda, A.;Nakamura, A.;Tanaka, Y. https://doi.org/10.1016/S0167-4781(99)00065-2
  13. Plant J. v.30 Differential expression and function of Arabidopsis thaliana NHX $Na^+/H^+$ antiporters in the salt stress response Yokoi, S.;Quintero, F.J.;Cubero, B.;Ruiz, M.T.;Bressan, R.A.;Hasegawa, P.M.;Pardo, J.M. https://doi.org/10.1046/j.1365-313X.2002.01309.x
  14. Plant Soil v.253 Characterization of a family of vacuolar $Na^+/H^+$ antiporters in Arabidopsis thaliana Aharon, G.S.;Apse, M.P.;Duan, S.;Hua, X.;Blumwald, E. https://doi.org/10.1023/A:1024577205697
  15. J. Plant Biol. v.46 Differences in photosynthetic characterization of salt tolerance for two rice (Oryza sativa) cultivars Oh, M.J.;Chun, H.S.;Lee, C.B. https://doi.org/10.1007/BF03030296
  16. Plant Physiol. v.108 Overexpression of ${\Delta}-pyrroline-5-carboxylate$ synthase increases proline production and confers osmotolerance in transgenic plants Kishor, P.B.K.;Hong, Z.;Miao, G.;Hu, C.A.;Verma, D.P.S.
  17. Plant J. v.12 Transformation of Arabidopsis thaliana with the coda gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress Hayashi, H.;Alia, Mustardy L.;Deshnium, P.;Ida, M.;Murata, N. https://doi.org/10.1046/j.1365-313X.1997.12010133.x
  18. Curr. Opin. Plant Biol. v.2 Metabolic engineering of plants for osmotic sress resistance Nuccio, M.L.;Rhodes, D.;McNeil, S.D.;Hanson, A.D. https://doi.org/10.1016/S1369-5266(99)80026-0
  19. J. Plant Physiol. v.151 Effect of pretreatment with methyl jasmonate on the response of Pisum sativum to salt stress Fedina, I.S.;Tsonev, T.D. https://doi.org/10.1016/S0176-1617(97)80071-5
  20. Photosynthetica v.35 Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate Velitchkova, M.;Fedina, I. https://doi.org/10.1023/A:1006878016556
  21. Biol. Plant. v.43 Response of Scenedesmus incrassatulus to salt stress as affected by methyl jasmonate Fedina, I.S.;Benderliev, K.M. https://doi.org/10.1023/A:1002816502941
  22. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.42 Chlorophyll fluorescence and photosynthesis: the basics Krause, G.H.;Weis, E. https://doi.org/10.1146/annurev.pp.42.060191.001525
  23. Photosynth. Res. v.25 The use of chlorophyll fluorescence nomenclature in plant stress physiology van Kooten, O.;Snel, F.H. https://doi.org/10.1007/BF00033156
  24. Photosynth. Res. v.54 Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-Calculation of qP and Fv'/Fm' without measuring Fo' Oxborough, K.;Baker, N.R. https://doi.org/10.1023/A:1005936823310
  25. Biochim. Biophys. Acta v.990 Relationship between the quantum yield of photosynthetic electron transport and the quenching of chlorophyll fluorescence Genty, B.;Briantais, J.M.;Baker, N.R. https://doi.org/10.1016/S0304-4165(89)80016-9
  26. J. Photosci. v.11 Construction of gene-specific primers of various antioxidant isoenzyme genes and their expressions in rice (Oryza sativa L.) seedlings obtained from gamma-irradiated seeds Kim, J.H.;Chung, B.Y.;Kim, J.S.;Wi, S.G.;Yang, D.H.;Lee, C.H.;Lee, M.C.
  27. Proc. Natl. Acad. Sci. USA v.99 A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein Yamanouchi, U.;Yano, M.;Lin, H.;Ashikari, M.;Yamada, K.
  28. Plant Physiol. v.70 Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo Smille, R.M.;Nott, R. https://doi.org/10.1104/pp.70.4.1049
  29. J. Plant Physiol. v.157 Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance Dionisio-Sese, M.L.;Tobita, S. https://doi.org/10.1016/S0176-1617(00)80135-2
  30. Crop Sci. v.44 Sorghum and salinity ll. Gas exchange and chlorophyll fluorescence of Sorghum under salt stress Netondo, G.W.;Onyango, J.C.;Beck, E. https://doi.org/10.2135/cropsci2004.0806
  31. Photosynthetica v.42 Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock Chen, H.X.;Gao, H.Y.;An, S.Z.;Li, W.J. https://doi.org/10.1023/B:PHOT.0000040579.37842.ca
  32. Func. Plant Biol. v.29 Factors affecting $CO_2$ assimilation, leaf injury and growth in salt-stressed durum wheat James, R.A.;Rivelli, A.R.;Munns, R.;von Caemmerer, S. https://doi.org/10.1071/FP02069
  33. Plant Cell Environ. v.23 Expression of dehydration-stress-related genes in the crowns of wheatgrass species [Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. Ex Link.) Schult.] having contrasting acclimation to salt, cold and drought Tabaei-Aghdaei, S.R.;Harrison, P.;Pearce, R.S. https://doi.org/10.1046/j.1365-3040.2000.00572.x
  34. Plant Physiol. v.131 Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth Jang, I.C.;Oh, S.J.;Seo, J.S.;Choi, W.B.;Song, S.I.;Kim, C.H.;Kim, Y.S.;Seo, H.S.;Choi, Y.D.;Nahm, B.H.;Kim, J.K. https://doi.org/10.1104/pp.007237
  35. New Phytol. v.141 Response of antioxidant systems and leaf water relations to NaCl stress in pea plants Hernandez, J.A.;Campillo, A.;Jimenez, A.;Alacon, J.J.;Sevilla, F. https://doi.org/10.1046/j.1469-8137.1999.00341.x
  36. J. Plant Physiol. v.161 Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidant enzymes Parida, A.K.;Das, A.B.;Mohanty, P. https://doi.org/10.1078/0176-1617-01084
  37. Plant Physiol. v.123 Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stress Yoshimura, K.;Yabuta, Y.;Ishikawa, T.;Shigeoka, S. https://doi.org/10.1104/pp.123.1.223
  38. Z. Naturforsch. v.59c Salt-stress induced alterations in protein profile and protease activity in the mangrove, Bruguiera parviflora Parida, A.K.;Das, A.B.;Mittra, B.;Mohanty, P.
  39. Ecotox. Environ. Safe. v.60 Salt tolerance and salinity effects on plants: a review Parida, A.K.;Das, A.B. https://doi.org/10.1016/j.ecoenv.2004.06.010
  40. J. Biol. Chem. v.279 Regulation of vacuolar $Na^+/H^+$ exchange in Arabidopsis thaliana by the Salt-Overly-Sensitive (SOS) pathway Qiu, Q.S.;Guo, Y.;Quintero, F.J.;Pardo, J.M.;Schumaker, K.S.;Zhu, J.K. https://doi.org/10.1074/jbc.M307982200