Affinity Immobilization of Dextransucrase on Dextran-based Support and the Production of Leucrose

  • Han, Nam-Soo (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kang, Seung-Yeon (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Lee, Soo-Bok (Department of Food Nutrition, Yonsei University) ;
  • Robyt, John F. (Department of Biochemistry and Biophysics, Iowa State University)
  • Published : 2005.06.30

Abstract

A simple and convenient method of immobilizing dextransucrase via an affinity interaction is described, along with the use of this system to synthesize leucrose. Dextransucrase was produced in sucrose-free medium by fermenting a constitutive mutant of Leuconostoc mesenteroides NRRL B-512F and was separated using an ultrafiltration membrane. The purified enzyme was free of dextran polymer, which previously was always found with the sucrose-induced enzyme. Therefore, it was possible to immobilize the enzyme on dextran-based resins using an affinity interaction. Sephadex G-200 was the best resin for immobilizing the dextransucrase and gave a fast flow rate through the packed column. The immobilized dextransucrase retained more than 80% of its specific activity after immobilization ($K_m\;=\;18.1\;mM$ and $k_{cat}\;=\;450\;sec^{-1}$ vs. 13.1 mM and $640\;sec^{-1}$, respectively, for the free enzyme). The immobilized dextransucrase showed improved stability over a pH range of 4.0 to 6.5 and at moderately high temperatures over $40^{\circ}C$. When immobilized dextransucrase was used to synthesize leucrose via the transfer reaction with sucrose and fructose, about 74% of the sucrose was converted into leucrose after one day, and the half-life of the enzyme activity was 15 days. Regeneration of the resin by supplementation with dextransucrase enabled the recovery of the initial activity of the system, but both the reaction and the flow rate were lower, probably owing to the accumulation of dextran inside the resin.

Keywords

References

  1. Dextrans;Industrial Gums De Belder, A.N.;Whistler, R.L.(ed.);BeMiller, J.N.(ed.)
  2. Carbohydr. Res. v.61 The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase Robyt, J.F.;Walseth, T.E. https://doi.org/10.1016/S0008-6215(00)84503-6
  3. Carbohydr. Res. v.121 Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase Robyt, J.F.;Eklund, S.H. https://doi.org/10.1016/0008-6215(83)84024-5
  4. Leucrose, a ketodisaccharide of industrial design;Carbohydrates as Organic Raw Materials Schwengers, D.;Lichtenthaler, F.W.(ed.)
  5. Biotech. Bioeng. v.22 Immobilization and properties of Leuconostoc mesenteroides dextransucrase Kaboli, H.;Reilly, P.J. https://doi.org/10.1002/bit.260220513
  6. Biotech. Bioeng. v.23 On the production of dextran by free and immobilized dextransucrase Monsan, P.;Lopez, A. https://doi.org/10.1002/bit.260230908
  7. Biotech. Bioeng. v.40 Investigation of production of dextran and dextransucrase by Leuconostoc mesenteroides immobilized within porous stainless steel El-Sayed, A.M.M.;Abdul-Wahid, K.;Coughlin, R.W. https://doi.org/10.1002/bit.260400509
  8. Enzyme Microb. Technol. v.17 Unconventional immobilization of dextransucrase with alginate Reischwitz, A.;Reh, K.D.;Buchholz, K. https://doi.org/10.1016/0141-0229(94)00091-5
  9. Enzyme Microb. Technol. v.19 Productivity of immobilized dextransucrase for leucrose formation Reh, K.D.;Noll-Borchers, M.;Buchholz, K. https://doi.org/10.1016/S0141-0229(96)80003-E
  10. J. Appl. Polymer Sci. v.51 Hemoglobin encapsulation in chitosan/calcium alginate beads Huguet, M.L.;Groboillot, A.;Neufeld, R.J.;Poncelet, D.;Dellacherie, E. https://doi.org/10.1002/app.1994.070510810
  11. Process Biochem. v.31 Calcium-alginate beads coated with polycationic polymers: comparison of chitosan and DEAE-dextran Huguet, M.L.;Neufeld, R.I.;Dellacherie, E. https://doi.org/10.1016/0032-9592(95)00076-3
  12. Gene v.182 Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only ${\alpha}$(1-6) and ${\alpha}$(1-3) linkages Monchois, B.;Willemot, R.M.;Remaud-Simeon, M.;Croux, C.;Monsan, P. https://doi.org/10.1016/S0378-1119(96)00346-0
  13. Biosci. Biotech. Biochem. v.53 Aggregated form of dextransucrases from Leuconostoc mesenteroides NRRL B-512F and its constitutive mutant Funane, K.;Yamada, M.;Shiraiwa, M.;Takahara, H.;Yamamoto, N.;Ichishima, E.;Kobayashi, M.
  14. Enzyme Microb. Technol. v.23 Large-scale preparation of highly purified dextransucrase from a high-producing constitutive mutant of Leuconostoc mesenteroides B-512FMC Kitaoka, M.;Robyt, J.F. https://doi.org/10.1016/S0141-0229(98)00060-X
  15. Enzyme Microb. Technol. v.16 Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrases Kim, D.;Robyt, J.F. https://doi.org/10.1016/0141-0229(94)90086-8
  16. Carbohydr. Res. v.266 Mechanism of dextran activation of dextransucrase Robyt, J.F.;Kim, D.;Yu, L. https://doi.org/10.1016/0008-6215(94)00262-E
  17. Enzyme Microb. Technol. v.16 Properties of Leuconostoc mesenteroides B-512FMC constitutive dextransucrase Kim, D.;Robyt, J.F. https://doi.org/10.1016/0141-0229(94)90134-1
  18. Carbohydr. Res. v.147 Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F Miller, A.W.;Eklund, S.H.;Robyt, J.F. https://doi.org/10.1016/0008-6215(86)85011-X
  19. Biochem. Biophys. Acta v.614 Characterization of the multiple forms and main component of dextransucrase from Leuconostoc mesenteroides NRRL B-512F Kobayashi, M.;Matsuda, K. https://doi.org/10.1016/0005-2744(80)90166-7
  20. J. Agric. Food Chem. v.45 Immobilization of thermostable maltogenic amylase from Bacillus stearothermophilus for continuous production of branched oligosaccharides Kang, G.J.;Kim, M.J.;Kim, J.W.;Park, K.H. https://doi.org/10.1021/jf970378p
  21. Biomaterials v.13 Covalent immobilization of ${\alpha}$-amylase onto PHEMA microspheres: preparation and application to fixed bed reactor Agric, M.Y.;Hasirci, V.;Alaeddinoglu, N.G. https://doi.org/10.1016/0142-9612(92)90131-7
  22. Polymer v.36 Entrapment of urease in glycol containing polymeric matrices and estimation of effective diffusion coefficients of urea Dermircioglu, H.;Beyenal, H.;Tanyolac, A.;Hasirci, N. https://doi.org/10.1016/0032-3861(95)90989-F
  23. Adv. Carbo. Chem. Biochem. v.51 Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose Robyt, J.F. https://doi.org/10.1016/S0065-2318(08)60193-6
  24. J. Am. Chem. Soc. v.78 The preparation, properties and structure of the disaccharide leucrose Stodola, F.H.;Sharpe, E.S.;Koepsell, H.J. https://doi.org/10.1021/ja01592a050
  25. Methods Enzymol. v.136 Dextran synthesis using immobilized Leuconostoc mesenteroides dextransucrase Monsan, P.;Paul, F.;Auriol, D.;Lopez, A. https://doi.org/10.1016/S0076-6879(87)36025-2
  26. Biotechnol. Lett. v.20 In vitro synthesis of oligosaccharides by acceptor reaction of dextransucrase from Leuconostoc mesenteroides Pereira, A.M.;Costa, F.A.;Rodrigues, M.I.;Maugeri, F. https://doi.org/10.1023/A:1005387632760
  27. Adv. Biochem. Eng. Biotechnol. v.64 Bioaffinity based immobilization of enzymes Saleemuddin, M. https://doi.org/10.1007/3-540-49811-7_6
  28. Biotechnology v.11 Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli Schatz, P.J. https://doi.org/10.1038/nbt1093-1138
  29. Biotechnology v.13 Calmodulin as a versatile tag for antibody fragments Neri, D.;De Lalla, C.;Petrul, H.;Neri, P.;Winter, G. https://doi.org/10.1038/nbt0495-373
  30. Biotech. Prog. v.20 Solid-phase refolding of cyclodextrin glycosyltransferase adsorbed on cationic-exchange resin Kweon, D.H.;Lee, D.H.;Han, N.S.;Seo, J.H. https://doi.org/10.1021/bp0341895
  31. Biotechnol. Prog. v.7 Improved adsorption to starch of a beta-galactosidase fusion protein containing the starch-binding domain from Aspergillus glucoamylase Chen, L.J.;Ford, C.;Kusnadi, A.;Nikolov, Z.L. https://doi.org/10.1021/bp00009a004
  32. Biotechnol. Prog. v.18 Separation of MBP fusion proteins through affinity membranes Cattoli, F.;Sarti, G.C. https://doi.org/10.1021/bp010119r
  33. Biotechnol. Adv. v.20 Cellulose-binding domains: biotechnological applications Levy, I.;Shoseyov, O. https://doi.org/10.1016/S0734-9750(02)00006-X
  34. J. Bacteriol. v.186 Conserved repeat motifs and glucan binding by glucansucrases of oral streptococci and Leuconostoc mesenteroides Shah, D.S.;Joucla, G.;Remaud-Simeon, M.;Russell, R.R. https://doi.org/10.1128/JB.186.24.8301-8308.2004