Assessment of the Bacterial Regrowth Potential in Drinking Water System Using Specific Regrowth Rate

재증식속도에 의한 상수도 시스템의 세균재증식능 평가

  • Oh, Jung-Woo (Department of Urban Engineering, School of Engineering, University of Tokyo)
  • 오정우 (동경대학 대학원 도시공학과 환경공학)
  • Published : 2005.03.31

Abstract

In this study, the bacterial regrowth characteristics in drinking water were investigated for various nutrient concentrations and forms using improved BRP method as a traditional approach and specific regrowth rate as a new index. The results of bacterial regrowth potential for glucose and $NH_4^+-N$, which was evaluated by BRP method as a traditional index, appeared to be higher relative to that of acetate or humic acids as carbon source and $NO_2^--N\;or\;NO_3^--N$ as nitrogen sources, respectively. The results obtained by specific regrowth rate as a new index were similar to that of BRP method with respect to the nutrient conditions examined in this study; i.e., the specific regrowth rate for glucose(ranged from 0.005 to $0.082\;hr^{-1}$) was feater than that acetate and humic acids(ranged from 0.005 to $0.068\;hr^{-1}$ and from 0.005 to $0.008\;hr^{-1}$, respectively). And specific regrowth rate for $NH_4^+-N$ (ranged from 0.008 to $0.072\;hr^{-1}$) was feater than that $NO_2^--N\;and\;NO_3^--N$ (ranged from 0.008 to $0.055\;hr^{-1}$ and from 0.008 to $0.059\;hr^{-1}$, respectively). Therefore, specific regrowth rate can be applied in order to evaluate the bacterial regrowth potential in drinking water.

본 연구에서는, 탄소원, 질소원 및 인산염 인의 형태별, 농도별 각각 다른 배양조건에 대하여, 세균의 재증식 특성을 기존지표인 BRP(Bacterial regrowth potential)법과 새로운 지표인 세균 재증식속도를 이용하여 비교평가하였다. 기존지표인 BRP법에 의해 평가된 세균재증식능은 유기탄소원의 경우 Glucose를 주입했을 경우가 Acetate 및 Humic acids를 주입했을 경우보다 상대적으로 크게 나타났다. 또한 질소원에 대해서는 $NH_4^+-N$을 주입한 재증식량이 $NO_2^--N$$NO_3^--N$을 주입한 경우보다 높게 나타났다. 인산염 인의 경우, $10\;{\mu}gP/L $ 이하의 매우 낮은 농도범위에서도 급격한 재증식량의 증가가 나타났다. 새로운 지표로써 세균 재증식속도에 의한 평가에서는 유기탄소원에 대해서, Glucose의 경우($0.005{\sim}0.082\;hr^{-1}$)가 Acetate($0.005{\sim}0.068\;hr^{-1}$) 및 Humic acids($0.005{\sim}0.008\;hr^{-1}$)의 경우보다 높게 나타났으며, 질소원에 대해서도, $NH_4^+-N$의 경우($0.008{\sim}0.072\;hr^{-1}$)가 $NO_2^--N$($0.008{\sim}0.055\;hr^{-1}$) 및 $NO_3^--N$($0.008{\sim}0.059\;hr^{-1}$)보다 높은 재증식속도를 갖는 것으로 나타났다. 새로운 평가지표로써 재증식속도에 의해 평가된 결과는 기존지표에 의한 결과와 동일한 경향을 나타내었으며, 따라서 세균 재증식속도에 의한 재증식능 평가방법은 기존지표의 단점을 개선할 수 있는 대체지표로, 적용성이 높은 것으로 판단되었다.

Keywords

References

  1. Van der, Kooij, D., and Hijnen Wim, A. M., 'Measuring the concentration of easily assimilable organic carbon in water treatment as a tool for limiting regrowth of bacteria in distribution systems,' Proceedings-AWWA Water Quality Technology Conference, 729-744(1986)
  2. Joret, J. C., Levi, Y., and Volk, C., 'Biodegradable dissolved organic carbon (BDOC) content of drinking water and potential regrowth of bacteria,' Water Sci. Technol., 2, 95-101(1991)
  3. Sathasivan, A., Ohgaki, S., Yamamoto, K., and Kamiko, N., 'Role of inorganic phosphorus in controlling regrowth in water distribution system,' Water Sci. Technol., 35, 37-44(1997)
  4. Roger, Y. S., Ingraham, J. L., Mark, L. W., and Page R. P., 'The microbial world,' Prentice-Hall(1986)
  5. 吳政祐, 渡部 雅智, 神通 浩二, 片山 浩之, 大垣 眞一郞, 'フロ-サイトメトリ-を用いた細菌再增殖能測定法の開發及びその適用に關する硏究,' 日本水道協會雜誌, 73(2), 2-15(2004)
  6. Philippe, L., Servais, P., Agogue, H., Courties, C., and Joux, F., 'Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic system?,' Appl. Environ. Microbiol., 67, 1775-1782(2001). https://doi.org/10.1128/AEM.67.4.1775-1782.2001
  7. Stephan, J., Partensky, F., Marie, D., Casotti, R., and Vaulot, D., 'Cell cycle regulation by light in Prochlorococcus strains,' Appl. Environ. Microbiol, 67, 782-790(2001) https://doi.org/10.1128/AEM.67.2.782-790.2001
  8. LeChevallier, M. W., Olson, B. H., and McFeters, G. A., 'Assessing and controlling bacterial regrowth in distribution system,' American Water Works Association Research Foundation(1990)
  9. Lynch, W. H. and Franklin, M., 'Effect of temperature on diauxic growth with glucose and organic acids in Pseudomonas fluorescens,' Arch. Microbiol., 118, 133-140(1978) https://doi.org/10.1007/BF00415721
  10. Ma, J. F., Paul, W. H., Michael, L. H., Paul, V. P., and Daniel, J. H., 'Cloning and Charaterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (Paraquat),' J. Bacteriology, 180,1741-1749(1998)
  11. Christophe, R. and Lisbeth, 0., 'Dynamic responses of Pseudomonas fluorescens DF57 to nitrogen or carbon source addition,' J. Biotechnol, 86, 39-50(2001) https://doi.org/10.1016/S0168-1656(00)00401-6
  12. Russel, J. B., 'Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling,' J. Appl. Bacteriol., 73, 363-370(1992) https://doi.org/10.1111/j.1365-2672.1992.tb04990.x
  13. Betlach, M. R., Tiedje, J. M., and Firestone, R. B., 'Assimilatory nitrate uptake in Pseudomonas jluorescens using $^13N$,' Arch. Microbiol., 129, 135-140(1981) https://doi.org/10.1007/BF00455349
  14. Baldwin, D. S., 'Reactive 'organic' phosphorus revisited,' Water Res., 32, 2265-2270(1998) https://doi.org/10.1016/S0043-1354(97)00474-0
  15. Markku, J. L., Miettinen, I. T., Vartiainen, T., Myllykangas, T., and Martikainen, P. J., 'Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water,' Water Res., 35(7), 1635-1640(2001) https://doi.org/10.1016/S0043-1354(00)00449-8
  16. Sathasivan, A. and Ohgaki, S., 'Application of new bacterial regrowth potential method for water distribution system a clear evidence of phosphorus limitation,' Water Res., 33, 137-144(1999) https://doi.org/10.1016/S0043-1354(98)00158-4
  17. Markku, J. L., Miettinen, I. T., Vartiainen, T., and Martikainen, P. J., 'A New Sensitive Bioassay for Determination of Microbially Available Phosphorus in Water,' Appl. Environ. Microbiol., 63, 3242-3245(1999)