DOI QR코드

DOI QR Code

Machine Learning Application to the Korean Freshwater Ecosystems

  • Published : 2005.12.31

Abstract

This paper considers the advantage of Machine Learning (ML) implemented to freshwater ecosystem research. Currently, many studies have been carried out to find the patterns of environmental impact on dynamics of communities in aquatic ecosystems. Ecological models popularly adapted by many researchers have been a means of information processing in dealing with dynamics in various ecosystems. The up-to-date trend in ecological modelling partially turns to the application of ML to explain specific ecological events in complex ecosystems and to overcome the necessity of complicated data manipulation. This paper briefly introduces ML techniques applied to freshwater ecosystems in Korea. The manuscript provides promising information for the ecologists who utilize ML for elucidating complex ecological patterns and undertaking modelling of spatial and temporal dynamics of communities.

Keywords

References

  1. Ahn, S.J. and G.W. Chun. 2001. Forecasting of the flood discharge using radial basis function. J. Korean Soc. Civil Eng. 21: 599-607
  2. Ahn, S.J., I.S. Yeon and K.I. Kim. 2000a. Rainfall forecasting using neural network. J. Korean Soc. Civil Eng. 20: 711-722
  3. Ahn, S.J., J.K. Lee, Y.S. Han and G.W. Chun. 2002. Flood runoff analysis using runoff forecasting model. J. Korean Soc. Civil Eng. 22: 311-319
  4. Ahn, S.J., K.W. Jung and K.I. Kim. 2000b. Forecasting of runoff hydrograph using neural network algorithm. J. Korean Water Res. Assoc. 33: 505-515
  5. Aitkenhead, M.J., A.J.S. McDonald, J.J. Dawson, G. Couper, R.P. Smart, M. Billett, D. Hope and S. Palmer. 2003. A novel method for training neural networks for time-series prediction in environmental systems. Ecol. Modelling 162: 87-95 https://doi.org/10.1016/S0304-3800(02)00401-5
  6. Almasri, M.N. and J.J. Kaluarachchi. 2005. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ. Modelling Software 20: 851-871 https://doi.org/10.1016/j.envsoft.2004.05.001
  7. An, S.J., I.S. Yeon, Y.S. Han and J.K. Lee. 2001. Water quality forecasting an Gongju station in Geum River using neural network model. J. Korean Water Res. Assoc. 34: 701-711
  8. Aurelle, D., S. Lek, J.-L. Giraudel and P. Berrebi. 1999. Microsatellites and artificial neural networks: Tools for the discrimination between natural and hatchery brown trout (Salmo trutta L.) in Atlantic populations. Ecol. Modelling 120: 313-324 https://doi.org/10.1016/S0304-3800(99)00111-8
  9. Blanco, A., M. Delgado and M.C. Pegalajar. 2000. A genetic algorithm to obtain the optimal recurrent neural network. Int. J. Approx. Reason. 23: 67-83 https://doi.org/10.1016/S0888-613X(99)00032-8
  10. Bobbin, J. and F. Reckngael. 2001. Knowledge discovery for prediction and explanation of blue-green algal dynamics in lakes by evolutionary algorithms. Ecol. Modelling 146: 253-262 https://doi.org/10.1016/S0304-3800(01)00311-8
  11. Bonesi, L., S. Rushton and D. Macdonald. 2002. The combined effect of environmental factors and neighbouring populations on the distribution and abundance of Aricola terrestris. An approach using rule-based models. Oikos 99: 220-230 https://doi.org/10.1034/j.1600-0706.2002.990202.x
  12. Brosse, S. and S. Lek. 2000. Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques. Freshwater Biol. 44: 441-452 https://doi.org/10.1046/j.1365-2427.2000.00580.x
  13. Brosse, S., J.-F. Guegan, J.-N. Tourenq and S. Lek. 1999. The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol. Modelling 120: 299-311 https://doi.org/10.1016/S0304-3800(99)00110-6
  14. Brosse, S., J.L. Giraudel and S. Lek. 2001. Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Modelling 146: 159-166 https://doi.org/10.1016/S0304-3800(01)00303-9
  15. Cao, H., F. Recknagel, B. Kim and N. Takamura. 2005. Hybrid Evolutionary Algorithm for rule set discovery in time-series data to forecast and explain algal population dynamics in two lakes different in morphometry and eutrophication. In F. Recknagel (ed.), Ecological Informatics. 2nd Edition. Springer-Verlag, NY. (in press)
  16. Cao, H.Q., F. Recknagel, G.J. Joo and D.K. Kim. 2006. Discovery of predictive rule sets for chlorophyll-a dynamics in the Nakdong River (Korea) by means of the hybrid evolutionary algorithm HEA. Ecol. Inform. (in press)
  17. Cereghino, R., J.L. Giraudel and A. Compin. 2001. Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self organizing maps. Ecol. Modelling 146: 167-180 https://doi.org/10.1016/S0304-3800(01)00304-0
  18. Cho, H.K. 2000. Predictive modeling of river water quality factors using Artificial Neural Network Technique-focusing on BOD and DO. J. Korean Env. Sci. Soc. 9: 456-462
  19. Cho, J.H., K.S. Sung and S.R. Ha. 2004a. A river water quality management model for optimizing regional wastewater treatment using a genetic algorithm. J. Env. Mgmt. 73: 229-242 https://doi.org/10.1016/j.jenvman.2004.07.004
  20. Cho, Y.J., I.S. Yeon and J.K. Lee. 2004b. Application of neural network model to the real-time forecasting of water quality. J. Korean Soc. Water Qual. 20: 321-326
  21. Cho, H.K. and Y.H. Lee. 2003. Parameter estimation of runoff model using the Genetic Algorithm. J. Env. Sci. 12: 1109-1116 https://doi.org/10.5322/JES.2003.12.10.1109
  22. Chon, T.-S., I.S. Kwak, Y.S. Park, T.H. Kim and Y.S. Kim. 2001. Patterning and short-term predictions of benthic macroinvertebrate community dynamics by using a recurrent artificial neural network. Ecol. Modelling 146: 181-193 https://doi.org/10.1016/S0304-3800(01)00305-2
  23. Chon, T.-S., Y.S. Park and J.H. Park. 2000c. Determining temporal pattern of community dynamics by using unsupervised learning algorithms. Ecol. Modelling 132: 151-166 https://doi.org/10.1016/S0304-3800(00)00312-4
  24. Chon, T.S., I.S. Kwak and Y.S. Park. 2000a. Pattern recognition of long-term ecological data in community changes by using artificial neural networks: Benthic macroinvertebrates and chironomids in a polluted stream. Korean J. Ecol. 23: 89-100
  25. Chon, T.S., Y.S. Park and E.Y. Cha. 2000b. Patterning of community changes in benthic macroinvertebrates collected from urbanized streams for the short time prediction by temporal artificial neuronal networks. In S. Lek and J.-F. Guegan (eds.), Artificial Neuronal Networks. Springer, Berlin. pp. 99-114
  26. Chon, T.S., Y.S. Park, K.H. Moon and E.Y. Cha. 1996. Patternizing communities by using an artificial neural network. Ecol. Modelling 90: 69-78 https://doi.org/10.1016/0304-3800(95)00148-4
  27. Clark, M.J. and K.J. Richards. 2002. Supporting complex decisions for sustainable river management in England and Wales. Aquatic Conserv. Mar. Freshw. Ecosyst. 12: 471-483 https://doi.org/10.1002/aqc.530
  28. D'heygere, T., P.L.M. Goethals and N. De Pauw. 2003. Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates. Ecol. Modelling 160: 291-300 https://doi.org/10.1016/S0304-3800(02)00260-0
  29. Dzeroski, S. 2001. Applications of symbolic machine learning to ecological modelling. Ecol. Modelling 146: 263-273 https://doi.org/10.1016/S0304-3800(01)00312-X
  30. Edmondson, W.T. 1969. Cultural eutrophication with special reference to Lake Washington. Mit. Internat. Verein. Limnol. 17: 19-32
  31. Fielding, A.H. 1999. An introduction to machine learning methods. In A.H. Fielding (ed.), Machine Learning Methods for Ecological Applications. Kluwer Academic Publishers, Massachusetts. pp. 1-35
  32. Gevrey, M., I. Dimopoulos and S. Lek. 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Modelling 160: 249-264 https://doi.org/10.1016/S0304-3800(02)00257-0
  33. Giraudel, J.L. and S. Lek. 2001. A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecol. Modelling 146: 329-339 https://doi.org/10.1016/S0304-3800(01)00324-6
  34. Giraudel, J.L., D. Aurelle, P. Berrebi and S. Lek. 2000. Application of the self-organizing mapping and fuzzy clustering to microsatellite data: How to detect genetic structure in brown trout (Salmo trutta) population, in artificial neuronal networks. In S. Lek and J.-F. Guegan (eds.), Artificial Neuronal Networks. Springer, Berlin. pp. 187-202
  35. Ha, S.R., N.S. Seong and B.H. Lee. 2000. Optimization of pipeline route for multi-regional water supply system by applying genetic algorithm. J. Korean Soc. Civil Eng. 20: 429-438
  36. Haberlandt, U., V. Krysanova and A. Bardossy. 2002. Assessment of nitrogen leaching from arable land in large river basins. Part II: regionalisation using fuzzy rule based modelling. Ecol. Modelling 150: 277-294 https://doi.org/10.1016/S0304-3800(01)00526-9
  37. Han, D., I.D. Cluckie, D. Karbassioun, J. Lawry and B. Krauskopf. 2002. River Flow Modelling Using Fuzzy Decision Trees. Water Resource. Mgmt. 16: 431-445 https://doi.org/10.1023/A:1022251422280
  38. Han, J.S. and M.S. Kim. 1999. Neural networks model for long term water quality prediction into river watershed. J. Korean Soc. Env. Admin. 5: 145-152
  39. Hastings, A. and T. Powell. 1991. Chaos in a three-species food chain. Ecology 72: 896-903 https://doi.org/10.2307/1940591
  40. Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. MacMillian, NJ, 696 pp
  41. Hoang, H., F. Recknagel, J. Marshall and S. Choy. 2001. Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia). Ecol. Modelling 146: 195-206 https://doi.org/10.1016/S0304-3800(01)00306-4
  42. Huanga, W. and S. Foo. 2002. Neural network modeling of salinity variation in Apalachicola River. Water Res. 36: 356-362 https://doi.org/10.1016/S0043-1354(01)00195-6
  43. Ibarra, A.A., M. Gevrey, Y.-S. Park, P. Lim and S. Lek. 2003. Modelling the factors that influence fish guilds composition using a back-propagation network: Assessment of metrics for indices of biotic integrity. Ecol. Modelling 160: 281-290 https://doi.org/10.1016/S0304-3800(02)00259-4
  44. Jain, S.K., A. Das and D.K. Srivastava. 1999. Application of ANN for reservoir inflow prediction and operation. J. Wat. Res. Plng. Mgmt. 125: 263-271 https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(263)
  45. Jang, M.H., J.G. Kim, G.I. Cho, J.R. Bahk and G.J. Joo. 2001. Change of fish fauna and longitudinal distribution in the Nakdong River. J. Nakdong River Res. 3: 63-83
  46. Jang. H.J., S.J. Lee and H.K. Lee. 2002. Water quality forecasting of Chungju Lake using artificial neural network algorithm. J. Env. Sci. 11: 201-207 https://doi.org/10.5322/JES.2002.11.3.201
  47. Jeong, D.I. and Y.O. Kim. 2005. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Process. 19: 3819-3835 https://doi.org/10.1002/hyp.5983
  48. Jeong, D.I., Y.O. Kim, S.Z. Cho and H.J. Shin. 2003a. A study on rainfall-runoff models for improving ensemble streamflow prediction- I. rainfall-runoff models using artificial neural networks. J. Korean Soc. Civil Eng. 23: 521-530
  49. Jeong, H.J. and H.K. Lee. 2002. Comparison of the BOD forecasting ability of the ARIMA model and the Artificial Neural Network model. Korean J. Env. Health Soc. 28: 19-25
  50. Jeong, K.S., D.K Kim, P. Whigham and G.J Joo. 2003c. Modelling Microcystis aeruginosa bloom dynamics in the Nakdong River by means of evolutionary computation and statistical approach. Ecol. Modelling 161: 63-75
  51. Jeong, K.S., F. Recknagel and G.J. Joo. 2003b. Prediction and elucidation of population dynamics of the blue-green algae Microcystis aeruginosa and Stephanodiscus hantzschii in the Nakdong River-Reservoir system (South Korea) by artificial neural networks. In F. Recknagel (ed.), Ecological Informatics: Understanding Ecology by Biologically Inspired Computation. Springer, Berlin. pp. 195-213
  52. Jeong, K.S., H.W. Kim, K. Ha, G.J. Joo and F. Recknagel. 2001. Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecol. Modelling 146: 115-129 https://doi.org/10.1016/S0304-3800(01)00300-3
  53. Joo, G.J., H.W. Kim and K. Ha. 1997. The development of stream ecology and current status in Korea. Korean J. Ecol. 20: 69-78
  54. Jung, K.S., C.S. Yoo and J.H. Kim. 2001. Estimation of the WGR multi-dimensional precipitation model parameters using the genetic algorithm. J. Korean Water Res. Assoc. 34: 473-486
  55. Kang, G.W., C.Y. Park and J.H. Kim. 1992. The non-linear prediction of river discharge by the pattern recognition method. J. Korean Hydrol. 25: 105-113
  56. Karul, C., S. Soyupak and E. Germen. 1998. A new approach to mathematical water quality modeling in reservoirs: Neural networks. Internat. Rev. Hydrobiol. 83: 689-696
  57. Kim, H.J., H.J. Paek and W.T. Kwon. 1999. A neural network for long-term forecast of regional precipitation. J. Korean Assoc. Geogr. Inf. Sci. 2: 69-78
  58. Kim, H.S., C.J. La, J.H. Kim and I.J. Kang. 2002. Precipitation forecasting by fuzzy theory: II. applicability of fuzzy time series. J. Korean Water Res. Assoc. 35: 631-638 https://doi.org/10.3741/JKWRA.2002.35.5.631
  59. Kim, H.S., S.H. Hwang and J.H. Kim. 1998. Reconstruction of river flows using tree-ring series and neural network. J. Korean Soc. Civil Eng. 18: 583-589
  60. Kim, S.W. 2000a. A study on the forecasting of daily streamflow using the multilayer neural networks model. J. Korean Water Res. Assoc. 33: 537-550
  61. Kim, S.W. 2000b. The application of neural networks method for the flood discharge forecasting in the river basin. J. Korean Soc. Civil Eng. 20: 801-811
  62. Kim, S.W. 2003. Streamflow estimation using coupled stochastic and neural networks model in the parallel reservoir groups. J. Korean Water Res. Assoc. 36: 195-209 https://doi.org/10.3741/JKWRA.2003.36.2.195
  63. Kim, S.W. and J.D. Salas. 2000. The flood water stage prediction based on neural networks method in stream gauge station. J. Korean Water Res. Assoc. 33: 247-262
  64. Kim, Y.G. and S.C. Park. 2003. Estimation of reaction coefficients of QUAL2E model using evolutionary algorithm and prediction of water quality in the Tamjin River. J. Korean Soc. Water. Wastewater. 17: 682-689
  65. Kim, Y.S., S.G. Jung, C.W. Son and S.M. Kwon. 2005. The prediction of shear behavior on silts in the middle part of Nak Dong River using Artificial Neural Network. J. Korean Soc. Civil Eng. 25: 285-292
  66. Kohonen, T. 2001. Self-Organizing Map. Springer, Berlin, 501 pp
  67. Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biol. Cyber. 43: 59-69 https://doi.org/10.1007/BF00337288
  68. Konda, T. and M.C. Deo. 1998. River stage forecasting using artificial neural networks. J. Hydro. Engrg. 3: 26-32 https://doi.org/10.1061/(ASCE)1084-0699(1998)3:1(26)
  69. Krysanova, V. and U. Haberlandt. 2002. Assessment of nitrogen leaching from arable land in large river basins. Part I. Simulation experiments using a process-based model. Ecol. Modelling 150: 255-275 https://doi.org/10.1016/S0304-3800(01)00525-7
  70. Kwak, I.S., J.K. Kim and T.S. Chon. 2003. Community patterning of benthic macroinvertebrates in urbanized streams by utilizing an Artificial Neural Network. Korean J. Limnol. 36: 29-37
  71. Kwak, I.S., G. Liu, T.S. Chon and Y.S. Park. 2000. Community patterning of benthic macroinvertebrates in streams of South Korea by utilizing an Artificial Neural Network. Korean J. Limnol. 33: 230-243
  72. La, C.J., H.S. Kim, J.H. Kim and I.J. Kang. 2002. Precipitation forecasting by fuzzy theory: I. application of neuro-fuzzy system and Markov chain. J. Korean Water Res. Assoc. 35: 619-629 https://doi.org/10.3741/JKWRA.2002.35.5.619
  73. Lae, R., S. Lek and J. Moreau. 1999. Predicting fish yield of African lakes using neural networks. Ecol. Modelling 120: 325-335 https://doi.org/10.1016/S0304-3800(99)00112-X
  74. Lee, C.Y., E.S. Kim, H.S. Shin and J.H. Kim. 2000a. A study of deterioration estimation model for drinking water pipe using Probabilistic Neural Network (PNN). J. Korean Soc. Civil Eng. 20: 197-210
  75. Lee, G.S. and E.S. Jeong. 2004. Optimal operation rules for multireservoir system using genetic algorithm. J. Korean Soc. Civil Eng. 24: 9-17
  76. Lee, H.K., K.D. Oh, D.H. Park, J.H. Jung and S.J. Yoon. 1997. Fuzzy expert system to determine stream water quality classification from ecological information. Water Sci. Tech. 36: 199-206
  77. Lee, J.K. and C.H. Lee. 1996. A study on the introduction of fuzzy theory to the adjustment of time-variant parameter of storage function method. J. Korean Water Res. Assoc. 29: 149-160
  78. Lee, J.K. and H.J. Kim. 2004. A study on peak flow prediction by Fuzzy-Neuro Network. J. Korean Soc. Civil Eng. 24: 209-219
  79. Lee, J.K. and S.J. Park. 2003. Comparative study on peak flow prediction using multilayer neural network. J. Korean Soc. Civil Eng. 23: 105-114
  80. Lee, K.S., S.C. Park and C.O. Hong. 2004. The river flood runoff forecasting using GA and T-S Fuzzy system. J. Korean Soc. Civil Eng. 24: 453-460
  81. Lee, K.S., S.C. Park, H.M. Lee and K.B. Rho. 2001. A daily river flow forecasting using GANN. J. Korean Soc. Civil Eng. 21: 609-617
  82. Lee, K.S., S.C. Park, H.M. Lee and Y.H. Jin. 2000b. The study on the forecasting of runoff applied the B.P. algorithm of the artificial neural network in the Young-San River. J. Korean Soc. Civil Eng. 20: 679-688
  83. Lee, S.C. and S.I. Lee. 2001. Genetic algorithms for optimal augmentation of water distribution networks. J. Korean Water Res. Assoc. 34: 567-575
  84. Lek, S. and J.F. Guegan. 1999. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Modelling 120: 65-73 https://doi.org/10.1016/S0304-3800(99)00092-7
  85. Lek, S., M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga and S. Aulagnier. 1996. Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Modelling. 90: 39-52 https://doi.org/10.1016/0304-3800(95)00142-5
  86. Lekka, E., I. Kagalou, M. Lazaridou-Dimitriadou, T. Albanis, V. Dakos, D. Lambropoulou and V. Sakkas. 2004. Assessment of the water and habitat quality of a Mediterranean river (Kalamas, Epirus, Hellas), in accordance with the EU Water Framework Directive. Acta Hydrochim. Hydrobiol. 32: 175-188 https://doi.org/10.1002/aheh.200300528
  87. Lim, J.S. 2003. Reservoir permeability determination using artificial neural network. Geosy. Eng. 40: 232-238
  88. Lu, R.S. and S.L. Lo. 2002. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water Res. 36: 2265-2274 https://doi.org/10.1016/S0043-1354(01)00449-3
  89. Lund, J.W.G. and C.S. Reynolds. 1982. The development and operation of large limnetic enclosures in Blelham Tarn, English Lake District, and their contribution to phytoplankton ecology. Prog. Phycol. Res. 1: 12-65
  90. Maier, H., M.D. Burch, M. Bormans. 2001a. Flow management strategies to control blooms of the cyanobacterium, Anabaena circinalis, in the River Murray at Morgan, South Australia. Regul. Rivers Res. Mgmt. 17: 637-650 https://doi.org/10.1002/rrr.623
  91. Maier, H.R., G.C. Dandy and M.D. Burch. 1998. Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecol. Modelling 105: 257-272 https://doi.org/10.1016/S0304-3800(97)00161-0
  92. Maier, H.R., T. Sayed and B.J. Lence. 2001b. Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models. Ecol. Modelling 146: 85-96 https://doi.org/10.1016/S0304-3800(01)00298-8
  93. Marsili-Libelli, S. 2004. Fuzzy prediction of the algal blooms in the Orbetello lagoon. Env. Modelling Software 19: 799-808 https://doi.org/10.1016/j.envsoft.2003.03.008
  94. McCulloch, W.S. and W. Pitts. 1943. A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5: 115-133 https://doi.org/10.1007/BF02478259
  95. McQueen, D.J., M.R.S. Johannes, J.R. Post, T.J. Stewart and D.R.S. Lean. 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59: 289-309 https://doi.org/10.2307/1942603
  96. Millie D.F., G.R. Weckman, H.W. Paerl, J.L. Pinckney, B.J. Bendis, R.J. Pigg and G.L. Fahnenstiel. 2005. Neural net modeling of estuarine indicators: Hindcasting phytoplankton biomass and net ecosystem production in the Neuse (North Carolina) and Trout (Florida) Rivers, USA. Ecol. Indicators (in press)
  97. Moatar, F., F. Fessant and A. Poirel. 1999. pH modelling by neural networks. Application of control and validation data series in the Middle Loire River. Ecol. Modelling 120: 141-156 https://doi.org/10.1016/S0304-3800(99)00098-8
  98. Obach, M., R. Wagner, H. Werner and H.-H. Schmidt. 2001. Modelling population dynamics of aquatic insects with artificial neural networks. Ecol. Modelling 146: 207-217 https://doi.org/10.1016/S0304-3800(01)00307-6
  99. Odum, E.P. 1983. Basic Ecology. Saunders College Publishing, Florida. 613 pp
  100. Oh, C.R., S.C. Park, H.M. Lee and Y.P. Pyo. 2002. A forecasting of water quality in the Youngsan River using neural network. J. Korean Soc. Civil Eng. 22: 371-382
  101. Oh, N.S. and J.H. Sonu. 1996. A study on rainfall prediction by neural network. J. Korean Water Res. Assoc. 29: 109-118
  102. Olden, J.D., M.K. Joy and R.G. Death. 2004. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Modelling 178: 389-397 https://doi.org/10.1016/j.ecolmodel.2004.03.013
  103. Ortin, S., J.M. Gutierrez, L. Pesquera and H. Vasquez. 2005. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction. Physica A. 351: 133-141 https://doi.org/10.1016/j.physa.2004.12.015
  104. Paik, K.R., J.H. Kim, H.S. Kim and D.R. Lee. 2005. A conceptual rainfall-runoff model considering seasonal variation. Hydrol. Process. 19: 3837-3850 https://doi.org/10.1002/hyp.5984
  105. Park, B.J., H.S. Cha and J.H. Kim. 1997. A study on parameters estimation of storage function model using the genetic algorithms. J. Korean Water Res. Assoc. 30: 347-355
  106. Park, J.K. and M.Y. Hwang. 2003. Development of rainfall-runoff process forecasting model using Artificial Neural Network. J. Korean Soc. Env. Admin. 9: 127-135
  107. Park, S.B., S.K. Lee, K.H. Chang, K.S. Jeong and G.J. Joo. 2002. The impact of Jangma (monsoon rainfall) on the changes of water quality in the lower Nakdong River (Mulgeum). Korean J. Limnol. 35: 161-170
  108. Park, S.C. 2004. Forecasting the water quality of Youngsan River by combined of GA and Fuzzy system. J. Korean Soc. Civil Eng. 24: 595-602
  109. Park, S.C. and S.J. Ha. 2003. Forecasting the water quality of river using GANN. J. Korean Soc. Civil Eng. 23: 507-514
  110. Park, Y.S., P.F.M. Verdonschot, T.-S. Chon and S. Lek. 2003a. Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network. Water Res. 37: 1749-1758 https://doi.org/10.1016/S0043-1354(02)00557-2
  111. Park, Y.S., R. Cereghino, A. Compin and S. Lek. 2003b. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Modelling 160: 265-280 https://doi.org/10.1016/S0304-3800(02)00258-2
  112. Park, Y.S., T.S. Chon, I.S. Kwak and S. Lek. 2004. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Ecol. Modelling 327: 105-122
  113. Park, Y.S., P.F.M. Verdonschot and S. Lek. 2005. Review of modelling techniques. In S. Lek, M. Scardi, P.F.M. Verdonschot, J.-P. Descy and Y.S. Park (eds.), Modelling Community Structure in Freshwater Ecosystems. Springer, Berlin. pp. 21-40
  114. Pielou, E.C. 1977. Mathematical Ecology. John Wiley & Sons, NY, 384 pp
  115. Recknagel, F. 1997. ANNA-Artificial Neural Network model for predicting species abundance and succession of blue-green algae. Hydrobiologia 349: 47-57 https://doi.org/10.1023/A:1003041427672
  116. Recknagel, F. 2001. Applications of machine learning to ecological modelling. Ecol. Modelling 146: 303-310 https://doi.org/10.1016/S0304-3800(01)00316-7
  117. Recknagel, F. 2003a. Simulation of aquatic food web and species interactions by adaptive agents embodied with evolutionary computation: A conceptual framework. Ecol. Modelling 170: 291-302 https://doi.org/10.1016/S0304-3800(03)00234-5
  118. Recknagel, F. 2003b. Ecological Informatics: Understanding Ecology by Biologically Inspired Computation. Springer, Berlin
  119. Recknagel, F., M. French, P. Harkonen and K.I. Yabunanka. 1997. Artificial neural network approach for modelling and prediction of algal bloom. Ecol. Modelling 96: 11-28 https://doi.org/10.1016/S0304-3800(96)00049-X
  120. Recknagel, F., T. Fukushima, T. Hanazato, N. Takamura and H. Wilson. 1998. Modelling and prediction of phyto- and zooplankton dynamics in Lake Kasumigaura by artificial neural networks. Lakes Reserv. Res. Mgmt. 3: 123-133 https://doi.org/10.1111/j.1440-1770.1998.tb00039.x
  121. Renshaw, E. 1991. Modelling Biological Populations in Space and Time. Cambridge University Press, NY
  122. Reyjol, Y., P. Lim, A. Belaud and S. Lek. 2001. Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France). Ecol. Modelling 146: 131-142 https://doi.org/10.1016/S0304-3800(01)00301-5
  123. Rhee, K.H., B.S. Moon, G.J. Nam and I.H. Kang. 2002. Forecasting of runoff hydrograph using Neural Network and Fuzzy Algorithms. J. Korean Soc. Water. Wastewater. 16: 161-168
  124. Rumelhart, D.E., G.E. Hinton and R.J. Williams. 1986. Learning representations by back-propagating errors. Nature 323: 533-536 https://doi.org/10.1038/323533a0
  125. Salski, A. 2003. Ecological application of fuzzy logic. In F. Recknagel (ed.), Ecological Informatics: Understanding Ecology by Biologically Inspired Computation. Springer, Berlin. pp. 3-14
  126. Santiago, R.R. 2005. Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the new world. Bioltropica 37: 209-221 https://doi.org/10.1111/j.1744-7429.2005.00028.x
  127. Scardi, M. 2001. Advances in neural network modeling of phytoplankton primary production. Ecol. Modelling 146: 33-45 https://doi.org/10.1016/S0304-3800(01)00294-0
  128. Scardi, M. and L.W. Harding Jr. 1999. Developing an empirical model of phytoplankton primary production: A neural network case study. Ecol. Modelling 120: 213-223 https://doi.org/10.1016/S0304-3800(99)00103-9
  129. Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184: 897-898 https://doi.org/10.1126/science.184.4139.897
  130. Schindler, D.W. 1977. The evolution of phosphorus limination in lakes. Science 195: 260-262 https://doi.org/10.1126/science.195.4275.260
  131. Schleiter, I.M., D. Borchardt, R. Wagner, T. Dapper, K.-D. Schmidt, H.-H. Schmidt and H. Werner. 1999. Modelling water quality, bio-indication and population dynamics in lotic ecosystems using neural networks. Ecol. Modelling 120: 271-286 https://doi.org/10.1016/S0304-3800(99)00108-8
  132. Shim, S.B. and M.S. Kim. 1999. A comparison study of neural networks model and storage function model for inflows forecasting. J. Korean Soc. Civil Eng. 19: 79-90
  133. Shim, S.B., M.S. Kim and K.C. Shim. 1998. Flood inflow forecasting on multipurpose reservoir by neural network. J. Korean Water Res. Assoc. 31: 45-57
  134. Shim, S.B., Y.K. Kim, M.S. Kim and K.C. Shim. 2001. Estimation of optimal parameter on WASP5/EUTRO5 model using genetic algorithm. J. Korean Soc. Civil Eng. 21: 315-326
  135. Shin, H.S. and M.J. Park. 1999a. Spatial analysis for mean annual precipitation based on neural networks. J. Korean Water Res. Assoc. 32: 3-13
  136. Shin, H.S. and M.J. Park. 1999b. Spatial-Temporal drought analysis of South Korea based on neural networks. J. Korean Water Res. Assoc. 32: 15-29
  137. Smith, J. and R.N. Eli. 1995. Neural-network models of rainfall-runoff process. J. Water Resour. Plng. Mgmt. 121: 499-508 https://doi.org/10.1061/(ASCE)0733-9496(1995)121:6(499)
  138. Son, M.W. and G.S. Lee. 2003. Forecasting of flood stage using neural networks and regression analysis. J. Korean Soc. Civil Eng. 23: 147-155
  139. Underwood, E.C., R. Klinger and P.E. Moore. 2004. Predicting patterns of non-native plant invasions in Yosemite National Park, California, USA. Diversity Distrib. 10: 447-459 https://doi.org/10.1111/j.1366-9516.2004.00093.x
  140. Walter, M., F. Recknagel, C. Carpenter and M. Bormans. 2001. Predicting eutrophication effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the recurrent neural network model ANNA. Ecol. Modelling 146: 97-113 https://doi.org/10.1016/S0304-3800(01)00299-X
  141. Wei, B., N. Sugiura and T. Maekawa. 2001. Use of artificial neural network in the prediction of algal blooms. Water Res. 35: 2022- 2028 https://doi.org/10.1016/S0043-1354(00)00464-4
  142. Werner, H. and M. Obach. 2001. New neural network types estimating the accuracy of response for ecological modelling. Ecol. Modelling 146: 289-298 https://doi.org/10.1016/S0304-3800(01)00314-3
  143. Whigham, P. and F. Recknagel. 2001a. An inductive approach to ecological time series modelling by evolutionary computation. Ecol. Modelling 146: 275-287 https://doi.org/10.1016/S0304-3800(01)00313-1
  144. Whigham, P. and F. Recknagel. 2001b. Predicting chlorophyll-a in freshwater lakes by hybridizing process-based models and genetic algorithms. Ecol. Modelling 146: 243-251 https://doi.org/10.1016/S0304-3800(01)00310-6
  145. Whigham, P. and G.B. Fogel. 2003. Ecological applications of evolutionary computation. In F. Recknagel (ed.), Ecological Informatics: Understanding Ecology by Biological-Inspired Computation. Springer, Berlin. pp. 49-71
  146. Willing, M.R. and S.K. Lyons. 1998. An analytical model of latitudinal gradients of species richness with an empirical test for marsupials and bats in the New World. Oikos 81: 93-98 https://doi.org/10.2307/3546471
  147. Wilson, H. and F. Recknagel. 2001. Towards a generic artificial neural network model for dynamic predictions of algal abu.ndance in freshwater lakes. Ecol. Modelling 146: 69-84 https://doi.org/10.1016/S0304-3800(01)00297-6
  148. Yao, X. and Y. Liu. 2001. Evolving neural networks for chlorophyll-a prediction. Proceedings of Fourth International Conference on Computational Intelligence and Multimedia Applications. pp. 185-189
  149. Yilmaz, I. 2005. Genetic algorithm usage in water quality monitoring networks optimization in Gediz (Turkey) River Basin. Env. Monitor. Assess. 108: 261-277 https://doi.org/10.1007/s10661-005-4328-z
  150. Yoon, K.H. and B.C. Seo. 2004. The study on real-time neural network forecasting model of flood runoff using dam discharge in Han River. J. Kor. Soc. Civil Eng. 24: 47-53
  151. Zadeh, L.A. 1965. Fuzzy sets. Inf. Control. 8: 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
  152. Zurada, J.M. 1992. Introduction to Artificial Neural Systems. West Publishing Company, NY