DOI QR코드

DOI QR Code

Phytoremediation of Cu-contaminated Soil and Water by Commelina communis

  • Published : 2005.02.28

Abstract

In the present study, we investigated the tolerance of Commelina communis to growth in Cu-contaminated soil and water We examined the germination rate, root and shoot growth of seedlings, fresh biomass in soil and water, and ability to eliminate Cu. We found that C. communis eliminated 41% of Cu in soil containing 50 mg Cu/kg and removed over 50% of Cu from water containing 100 mg Cu/L Cu. In addition, the plants could accumulate 90 mg Cu/g when grown in soil containing 50 mg Cu/kg and 140 mg Cu/g when grown in soil containing 100 mg Cu/kg thus higher levels of Cu removal were observed in soils containing higher Cu concentrations. In water, the maximal accumulation rate was 4.9 mg Cu/g root and 1.2 mg Cu/g shoot in water containing 20 mg Cu/L, and 7 days after exposure, Cu absorption saturated. Further, the growth rate of C. communis was not affected by up to 100 mg Cu/kg in the soil. Therefore, the phytotoxic effect of Cu on plants increased as the concentration of Cu was raised, although to different extents depending on whether the Cu was in soil or water. Overall, Cu removal from soil by C. communis was most effective at 100 mg Cu/kg in soil and 10 mg Cu/L in water. Finally, we identified two peaks of Cu-binding ligands in C. communis. Which is a high molecular weight peak (HMWL) at 60 kDa (Fraction 17 to 25) and a Cu binding peptide peak at <1 kDa (Very low molecular weight ligand: VLMWL). Cu-binding peptide (Cu-BP) was observed to have an amino acid composition typical of phytochelations.

Keywords

References

  1. Alloway, B.J. 1995. Heavy Metals in Soils, 200 Edition. Blackie, London
  2. Antonovics, J., A.D. Bradshaw and R.G. Turner, 1971. Heavy metal tolerance in plants. Adv. Ecol. Res. 7: 1-85 https://doi.org/10.1016/S0065-2504(08)60202-0
  3. Baker, A.J.M and P.L. Walker. 1990. Ecophysiology of metal uptake by tolerant plants. In AI. Shaw (ed.) Heavy Metal Tolerance in Plants. CRC Press. Boca Raton. FL. pp. 155-177
  4. Baker, A.J.M 1981. Acumulators and excluders - strategies in the response of plants to heavy metals. J. Plant Nutr. 3: 643-654 https://doi.org/10.1080/01904168109362867
  5. Banuelos, G.S., R. Mead and G.J. Hoffman. 1993. Accumulation of selenium in wild mustard irrigated with agricultural effluent. Agr. Ecosyst. Environ. 43: 119-126 https://doi.org/10.1016/0167-8809(93)90114-5
  6. Beak, S.S., S. Jang and S.J. Lee. 1999. Phytoremediation. Inst. of Ind. Tech. J. 18(1): 77-84
  7. Berne, M.P., P. Thibault, A.L. Schwan and W.E. Rauser. 1995. Three families of thiol peptides are induced cadmium in maize. Plant J. 7: 391-400 https://doi.org/10.1046/j.1365-313X.1995.7030391.x
  8. David, I.H., B.A. Rattner, G.A. Burtor Jr. and I. Caims Jr. 1995. Handbook of Ecotoxicology
  9. Eanetta, N.T. and J.C. Steffens. 1989. Labile sulfide and sulfite in phytochelatin complexes. Plant Physiol. 89:76
  10. EPA 2001. Brownfields Technology Primer: Selecting and using phytoremediation for site clean up. EPA 542-R-01-006
  11. Ernst, W.H.O., J.A.C. Verkleij and H. Schat. 1992. Metal tolerance in plants. Acta Bot. Neerl. 41: 229-248 https://doi.org/10.1111/j.1438-8677.1992.tb01332.x
  12. Grill, E., E.L. Winnacker and M.H. Zenk. 1987. Phytochelatins, a class of heavymetal binding peptides from plants are fimctionally analogous to metallothinoeins. Proc. Nat. Acad. Sci. USA 84: 439-443
  13. Harper, F.A., S.E. Smith and M.R. Macnair. 1997. Where is the cost in copper tolerance in Mimulus gutta/us: Testing the trade-off hypothesis. Funct. Ecol. 11: 764-774 https://doi.org/10.1046/j.1365-2435.1997.00155.x
  14. Jackson, P.J., P.J. Unkefer, E. Delhaize and N.J. Robinson. 1990. Mechanisms of trace metal tolerance in plants. In kattennan F. (ed.) Environmental inquiry to plants, Academic Press, San Diego. pp. 231-258
  15. Leblova, S. and M Stiborova. 1986. Structure of phosphoenolpyruvate carboxylase from maize leaves. FEBS. letters 205: 32-34 https://doi.org/10.1016/0014-5793(86)80860-2
  16. Leopold, I., D. Gunther, J. Schmidt and D. Neumann. 1999. Phytochelatins and heavy metal tolerance. Phytochemistry 50: 1323-1328 https://doi.org/10.1016/S0031-9422(98)00347-1
  17. Levi-Minzi, R. and R. Riffaldi. 1978. Ricerche preliminary sul contenuton in metallic pesanti dei fanghi didepurazione, Agric. Ital. 107: 169-178 (with English abstract)
  18. Mengel, K. and E.A. Kirby. 1987. Principles of plant nutrition. International Potash Institute
  19. Mohan, B.S. and B.B. Hosetti. 1991. Aquatic plants for toxicity assessment. Environ. Res. A 81: 259-274 https://doi.org/10.1006/enrs.1999.3960
  20. Monni, S., M. Salemaa and N. Millar. 2000. The tolerance of Empetrum nigrum to copper and nickel. Environ. Pollut. 109: 221-229 https://doi.org/10.1016/S0269-7491(99)00264-X
  21. Neumann, D. and U.Z. Nieden. 2000. Silicon and heavy metal tolerance of higher plants. Phytochemistry 56: 685-692 https://doi.org/10.1016/S0031-9422(00)00472-6
  22. Robinson, N.J., K. Barton, C.M Naranjo, L.O. Sillerud, J. Trewhella, K. Watt and P.J. Jackson. 1987. Characterization of metal peptides from cadmiwn resistant plant cells. Experentia 52: 323-327
  23. Speiser, J.L., S.L. Abrahamson, G. Banuelos and D.W. Ow. 1992. Brassica juncea produces a phytochelatin cadmiwn sulfide complex. Plant Physiol. 99: 817-821 https://doi.org/10.1104/pp.99.3.817
  24. Suthersan, S.S. 1997. Remediation engineering, CRC Press
  25. Turner, A.P., N.M. Dickinson and N.W. Lepp. 1991. Indices of metal tolerance in trees. Water Air Soil Poll. 57-58: 617-625
  26. Verkleij, J.A.C., P. Koevoets, J.V. Riet, R. Bank, Y. Nijdam and W.H.O. Ernst. 1990. Poly(r-glutamyl cysteinyl) glycines or phytochelataions and their role in cadmium tolerance of Silene vulgaris. Plant Cell Environ. 13: 913-921 https://doi.org/10.1111/j.1365-3040.1990.tb01981.x
  27. Wallnofer, P.R and G. Engelhardt. 1984. Schadstoffe, die aus dem Boden aufgenommen werden. In Hock B. and Elstner E. F. (eds.), Pflanzentoxikologie. BIWissenschaftsverlag, Mannheim. 96-117 (with English abstract)
  28. Wang, W. 1991. Literature review on higher plants for toxicity testing. Water Air Soil Poll. 59: 381-410 https://doi.org/10.1007/BF00211845
  29. White, M.C., A.M. Decker and R.L. Chaney. 1981. Metal complexation in xylem fluid. I : Chemical composition of tomato and soybean stem exudates. Plant Physiol. 67: 292-300 https://doi.org/10.1104/pp.67.2.292
  30. Wilmer, C.M. 1983. Stomata. Lomngman Inc. New York