Oxidation of Phenol Using Ozone-containing Microbubbles Formed by Electrostatic Spray

전기장에 의해 생성된 미세기포를 이용한 페놀의 오존산화

  • Shin, Won-Tae (Chemical Discipline Office of Directorates, Korea Science and Engineering Foundation) ;
  • Jung, Yoo-Jin (Department of Environmental Engineering, Dong-A University) ;
  • Sung, Nak-Chang (Department of Environmental Engineering, Dong-A University)
  • Published : 2005.12.31

Abstract

The use of ozone in water and wastewater treatment systems has been known to be a process that is limited by mass transfer. The most effective way to overcome this limitation is to increase the interfacial area available for mass transfer by decreasing the size of the ozone gas bubbles that are dispersed in solution. Electrostatic spraying(ES) of ozone into water was investigated in this work as a method of increasing the rate of mass transfer of ozone into a solution and thereby increasing the rate of phenol oxidation. Results were obtained for ES at input power levels ranging from 0 to 4 kV and compared with two different pore-size bubble diffusers($10{\sim}15{\mu}m$ and $40{\sim}60{\mu}m$). It was determined that the rate of mass transfer could be increased by as much as 40% when the applied voltage was increased from 0 to 4 kV as a result of the smaller bubbles generated by ES. In addition, ES was shown to be more effective than the medium-pore-size($10{\sim}15{\mu}m$) bubble diffuser and the best results were achieved at low gas flow rates.

상수나 하수처리장에서 쓰이는 오존처리는 물질전달에 제약을 받는 공정임은 알려져왔다. 이런 물질전달의 한계를 극복하는 방법으로 매우 효과적인 것은 오존가스를 함유한 기포의 크기를 줄임으로써 물질전달에 필요한 접촉면적을 넓히는 것이다. 오존의 전달을 크게 하기 위한 방법으로서 본 연구에서는 전기장분사(Electrostatic spraying: ES)를 사용하였다. 실험에서는 ES와 기포발생판을 비교하였는데 ES실험에서는 전압을 0 kV에서 4 kV 범위까지 높여주어 물질전달효과를 살펴보았고 기공크기가 다른 두 가지 기포발생판(미세기공: 기공크기 $10{\sim}15{\mu}m$, 중간기공: 기공크기 $40{\sim}60{\mu}m$)을 사용하여 물질전달효율을 비교 분석 하였다. 물질전달효율은 시간의 경과에 따른 용존오존농도의 측정과 페놀의 산화시간으로 간접 계산하였다. 실험 결과 ES의 경우 전압을 0 kV에서 4 kV까지 올렸을 때 기포의 크기가 작아짐으로 인해 오존전달율을 약 40% 정도 향상시킬 수 있었다. 또한 ES와 기포발생판의 물질전달 비교실험에서 미세기공 기포발생판보다 4 kV의 ES가 더 효과적임을 알 수 있었다.

Keywords

References

  1. Waste Manage. v.10 Study of ozonation reaction in phenolic effluents Hawash, S.;El-Ibiari, N.;El-Diwani, G.
  2. AIChE J. v.40 Electrostatic spraying of nonconductive fluids into conductive fluids Tsouris, C.;DePaoli, D.W.;Feng, J.Q.;Basaran, O.A.;Scott, T.C.
  3. Ind. Eng. Chem. Res. v.36 Experiments on electrostatic dispersion of air in water Shin, W.T.;Yiacoumi, S.;Tsouris, C.
  4. Ozone Sci. Eng. v.18 Guideline for measurement of ozone concentration in the process gas from an ozone generator Rakness, K.;Gordon, G.;Langlais, B.;Masschelein, W.;Matsumoto, N.;Richard, Y.;Robson, C.M.;Somiya, I.
  5. Standard Methods for the Examination of Water and Wastewater Eaton, A.D.;Clesceri, L.S.;Greenberg, A.E.
  6. Environ. Sci. Technol. v.27 Determination of phenols by solid-phase microextraction and gas chromatographic analysis Buchholz, K.D.;Pawliszyn, J.
  7. Environ. Sci. Technol. v.17 Solubility of ozone in aqueous solutions of 00.6 M ionic strength at $530^{\circ}C$ Kasak-Channing, L.F.;Helz, G.R.
  8. lnd. Eng. Chem. Res. v.34 Experimental investigation of electrostatic dispersion of nonconductive fluids into conductive fluids Tsouris, C.;DePaoli, D.W.;Feng, J.Q.;Scott, T.C.