재조합 발광대장균과 해양 발광 미생물을 이용한 중금속 급성독성평가

Comparison of Marine Luminescence Bacteria and Genetically Modified Luminescence E. coli, for Acute Toxicity of Heavy Metals

  • 이상민 (공주대학교 공과대학 환경공학과) ;
  • 배희경 (국립환경연구원 위해성평가과)
  • Lee, Sang-Min (Department of Environmental Engineering, Kongju National University) ;
  • Bae, Hee-Kyung (Environmental Risk Assessment Division, National Institute of Environmental Research)
  • 발행 : 2005.08.31

초록

수계에 존재하는 중금속의 급성독성을 평가하기 위해 발광유전자를 대장균에 삽입한 재조합 대장균($DH5{\alpha}$/pSB311)과 해양성 발광세균인 Vibrio fisheri를 바이오센서로 사용하는 LumisTox를 비교 평가하였다. 재조합 발광대장균인 $DH5{\alpha}$/pSB311는 Photorhabdus luminescens로부터 발광유전자인 lux CDABE를 분리하여 multicopy plasmid pACYC184에 재조합한 것이다. $DH5{\alpha}$/pSB311는 기존의 재조합 발광세균과 달리 발광반응 시 별도의 기질이 소모되지 않는 특성이 있다. 중금속의 급성독성을 평가한 결과 수은과 구리가 아연과 카드뮴에 비해 상대적으로 강한 독성을 나타났고 $DH5{\alpha}$/pSB311의 중금속에 대한 민감도는 Vibrio fisheri를 이용한 LumisTox에 비해 같거나 민감한 반응을 나타냈다. 측정된 중금속 급성독성의 강도는 $DH5{\alpha}$/pSB311의 경우 $Hg^{2+}>Cu^{2+}>Zn^{2+}>Cd^{2+}$의 순이고 LumisTox는 $Hg^{2+}>Cu^{2+}>Cd^{2+}>Zn^{2+}$ 순으로 나타났다. 재조합 발광세균을 이용한 바이오센서는 검출민감도, 신속한 측정 및 조작의 간편성을 충족시킬 수 있는 기술이며 또한 재조합 기술의 진보에 따라 계속적으로 기능이 향상될 수 있다는 특징이 있다.

The responses of two luminescence-based biosensors were studied on various heavy metals in aqueous solutions. One was recombinant E. coli ($DH5{\alpha}$/pSB311), genetically modified luminescence-based bacteria, and the other was Vibrio fisheri used for the LumisTox system. The recombinant E. coli was marked with the lux CDABE gene from multicopy plasmid, pACYC184, originally isolated from Photorhabdus luminescens. The $DH5{\alpha}$/pSB311 had a characteristic of no organic substrate for its luminescence reaction. Among the tested heavy metals Zinc and cadmium were less toxic than copper and mercury. The recombinant E. coli was more sensitive to toxicity of heavy metals than the LumisTox. The order of toxicity of the heavy metals to the recombinant E. coli was $Hg^{2+}>Cu^{2+}>Zn^{2+}>Cd^{2+}$. In case of the LumisTox, the order of the toxicity of heavy metals was $Hg^{2+}>Cu^{2+}>Cd^{2+}>Zn^{2+}$. The genetically modified luminescence-based biosensor offers a range of sensitive, rapid, and easy to use methods for assessing the potential toxicity of heavy metals in aqueous samples.

키워드

참고문헌

  1. Korean Journal of Limnology v.28 no.3 물벼룩과 현광등 박테리아를 이용한 중금속의 급성독성평가 하현중;김성태;최종욱;민성홍;장태연;김건홍
  2. 대한환경공학회지 v.19 no.10 급성독성법을 이용한 수계의 중금속 결합 능력 비교 공인철;최규형
  3. Water Environ. Res v.71- Bioluminescent Reporter Bacterium for Toxicity Monitoring in Biological Wastewater Treatment Systems Kelly, C.J.;Lajoie, C.A.;Layrton, A.C.;Sayler, G.S. https://doi.org/10.2175/106143099X121599
  4. J. WPCF v.48 no.5 Measurement of metal toxicity by bioche-?mical oxygen demand Mowat, A.
  5. Toxic. Assess. v.2 Photobacterium phosphoreum, Toxicity bioassay. I. Test procedures and applications Ribo, J.M.;Kaiser, K.L.E. https://doi.org/10.1002/tox.2540020307
  6. Soil Biology & Biochemistry v.32 Influence of soil microbial activity level on the detetmination of contaminated soil toxicity using Lumistox and MetPlate bioassays Brohon, B.;Gorudon, R. https://doi.org/10.1016/S0038-0717(99)00216-3
  7. Toxic. Assess. v.5 Use of Escherichia coli cloned with genes encoding bacterial luciferase for evaluation of chemical toxicity Lampinen, J.;Korpela, M.;Saviranta, P.;Kroneld, R.;Karp, M. https://doi.org/10.1002/tox.2540050403
  8. Chemosphere v.31 no.5 Use of Luminescence Bacteria to Assess Copper Bioavailability in Malt Whisky Distillery Effluent Paton, G.I.;Palmer, G.;Kindness, A.;Campbell, C.;Glover, L.A.;Killham, K. https://doi.org/10.1016/0045-6535(95)00183-9
  9. Toxicol. Chem. v.19 no.3 Biosensing the Acute Toxicity of Metal Interactions: Arc They Additive, Synergistic, or Antagonistic, Environ Preston, S.;Coad, N.;Towend, J.;Kiilham, K.;Paton, G.I. https://doi.org/10.1897/1551-5028(2000)019<0775:BTATOM>2.3.CO;2
  10. Ann. NY Acad. Sci. v.646 Construction and evaluation of a self-luminescent biosensor Geiselhalt, L.;Osgood, M.;Holmes, D. https://doi.org/10.1111/j.1749-6632.1991.tb18563.x
  11. FEMS Microbial. Lett. v.110 Lux AB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258 Corhisier, P.G.J.;Nuyts, G.;Mergeay, M.;Silver, S. https://doi.org/10.1111/j.1574-6968.1993.tb06325.x
  12. FEMS Microbial. Rev v.14 Plasmids of heavy metal resistance in Alcaligenes eutrophus CH34. mechanisms and applications Collard, J.M.;Corbisier, P.;Dicls, L.;Dong, Q.;Jeanthon, C.;Mergeay, M.;Taghavi, S.;Van der Lelic, D.;Wilmotte, A.;Wuertz, S. https://doi.org/10.1111/j.1574-6976.1994.tb00115.x
  13. Journal of Biotechnology v.94 Recomhinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA ::lux fusions Ofra Bechor;Dana, R.;Smulski, Tina K.;Van Dyk;Robert, A.;LaRossa, Shimshon Belkin https://doi.org/10.1016/S0168-1656(01)00423-0
  14. Wastewater Engineering Treatment Disposal Reuse Mecalf, E.
  15. Chemosphere v.58 Toxicity of metals and organic chemicals evaluated with bioluminescence assays Shijin, R.;Paul, D.F. https://doi.org/10.1016/j.chemosphere.2004.07.005
  16. Adv. Environ. Res. v.6 Expenmentai and mathe-maticallcomputational assessment of the acute toicity of chemical mixtures from the Microtox assay Mowat, F.S.;Bundy, K.J. https://doi.org/10.1016/S1093-0191(01)00099-5
  17. Biosenson & Bioelectronics v.20 A novel continuous toxicity test system using a luminously modified freshwter bacterium Cha, J.C.;Park, K.J.;Ihm, H.S.;Park, J.E.;Kim, S.Y.;Kang, I.N.;Lee, K.H.;Jahng, D.J.;Lee, D.H.;Kim, S.J. https://doi.org/10.1016/j.bios.2004.02.001