디젤의 청정연소를 위한 저온 플라즈마 연료개질 및 개질가스의 디젤엔진 첨가에 관한 연구

Nonthermal Plasma-assisted Diesel Reforming and Injection of the Reformed Gas into a Diesel Engine for Clean Combustion

  • 김성수 (한국에너지기술연구원 폐기물에너지연구센터) ;
  • 정수현 (한국에너지기술연구원 폐기물에너지연구센터) ;
  • 김진걸 (순천향대학교 나노화학공학과)
  • Kim, Seong-Soo (Waters Pyrolysis Research Center, Korea Institute of Energy Research) ;
  • Chung, Soo-Hyun (Waters Pyrolysis Research Center, Korea Institute of Energy Research) ;
  • Kim, Jin-Gul (Department of Chemical Engineering, Soonchunhyang University)
  • 발행 : 2005.04.30

초록

저온 플라즈마 연료개질 장치를 개발하여 여러 운전인자가 그 성능에 미치는 영향을 조사하였고 생성된 수소농후 개질가스를 무부하(Idle) 상태의 디젤엔진에 연소용 공기와 같이 주입하여 NO와 매연 저감효율에 미치는 영향을 조사하였다 전력 소모량이 증가할수록 개질반응의 점화가 더욱 용이하였으나 $H_2$ 농도, $H_2$ 수율, 에너지 전환율과 같은 저온 플라즈마 연료개질 장치의 성능은 O/C 비에 의해서만 영향을 받았는데 그 이유는 평형 반응온도가 O/C 비에 의하여 결정되기 때문이다. 저온 플라즈마 연료개질 장치에서의 $H_2$ 수율과 에너지 전환율은 O/C 비가 증가함에 따라 O/C 비가 $1.2{\sim}1.5$에서 33.4%와 66%의 최고값을 통과하였다. $H_2$ 수율과 에너지 전환율이 O/C 비가 $1.2{\sim}1.5$ 이하인 범위에서 O/C 비가 증가함에 따라 증가하는 이유는 O/C 비가 높아짐에 따라 완전 산화반응이 충분히 일어나서 반응온도가 높아지기 때문으로 보인다. O/C비가 $1.2{\sim}1.5$ 이상인 범위에서 O/C 비가 증가함에 따라 $H_2$ 수율과 에너지 전환율이 감소하는 현상은 과잉산소 조건에서 완전산화반응이 더욱 촉진되어 $H_2$ 수율과 에너지 전환율이 감소하였기 때문으로 보인다. 무부하 상태의 디젤엔진에 개질가스를 주입시 개질된 디젤/총디젤 무게비가 $18.2{\sim}23.5%$까지 증가할 때 NO저감효율과 매연제거효율은 각각 68.8%와 55.5%까지 증가하였다.

A nonthermal plasma-assisted fuel reformer was developed and the effects of operating variables on the performance of this reformer were studied. The $H_2$-rich reformed gas from the reformer was injected into a diesel engine under an idle condition and the effects of the amount of injected gas on the NO and soot reduction were investigated. It was found that with increasing electric power consumption, the degree of facility of ignition of the reforming reaction in the reformer could be enhanced. The performance of the reformer including $H_2$ concentration, $H_2$ recovery, and energy conversion was affected only by the O/C mole ratio. This was because the equilibrium reaction temperature was governed by the O/C mole ratio. With increasing O/C mole ratio, the $H_2$ recovery and energy conversion passed through the maximum values of 33.4% and 66%, respectively, at an O/C mole ratio between 1.2 and 1.5. The reason why the $H_2$ recovery and energy conversion increased with increasing O/C mole ratio when the O/C mole ratio was lower than $1.2{\sim}1.5$ appeared to be that the complete oxidation reaction occurred more enough with increasing O/C mole ratio in this low O/C mole ratio range and accordingly the reaction temperature increased. Whereas the reason why the $H_2$ recovery and energy conversion decreased with increasing O/C mole ratio when the O/C mole ratio was higher than $1.2{\sim}1.5$ appeared to be that the complete oxidation reaction was further advanced and the $H_2$ recovery and energy conversion decreased. As the weight ratio of reformed diesel to total diesel which entered the diesel engine was increased to $18.2{\sim}23.5%$, NO and soot reduction efficiencies increased and reached as values high as 68.5% and 23.5%, respectively.

키워드

참고문헌

  1. Liu, C., Marafee, A., Hill., B., Xu., G., and Mallison, R. G., 'Oxidative Coupling of Methane with AC and DC Corona Discharge,' Ind. Eng. Chem. Res., 35, 3295 -3301(1996) https://doi.org/10.1021/ie960138j
  2. Yao, S. L., Takemoto, T., Ouyang, F., Nakayama, A., Suzuki, E., Mizuno, A., and Okumoto, M., 'Selective Oxidation of Methane Using a Non-thermal Pulsed Plasma,' Energy Fuels, 14, 459-463(2000) https://doi.org/10.1021/ef9901692
  3. Supat, K., Kruapong, A., Chavadej, S., Lobban, L. L., and Mallison, R. G., 'Synthesis Gas Production with Air in AC Electric Gas Discharge,' Energy Fuels, 17, 474-481(2003) https://doi.org/10.1021/ef0202337
  4. Pietruszka, B., Anklam, K., and Heintze, M., 'Plasma-assisted Partial Oxidation of Methane to Synthesis Gas in a Dielectric Barrier Discharge,' Appl. Catal., A: General, 261, 19-24(2004) https://doi.org/10.1016/j.apcata.2003.10.027
  5. Larkin, D. W., Caldwell, T. A., Lobban, L, L., and Mallison, R. G., 'Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature Electric Discharge,' Energy Fuels, 12, 740-744 (1998) https://doi.org/10.1021/ef970217n
  6. Hwang, B. B., Yeo, Y. K., and Na, B. K., 'Conversion of $CH_{4}$, and $CO_{2}$ to Syngas and Higher Hydrocarbons Using Dielectric Barrier Discharge,' Korean J. Chem. Eng., 20(4), 631-634(2003) https://doi.org/10.1007/BF02706899
  7. Supat, K., Chavadej, S., Lobban, L. L., and Mallison, R. G., 'Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge,' Ind. Eng. Chem. Res., 42, 1654-1661 (2003) https://doi.org/10.1021/ie020730a
  8. Le, H., Loban, L. L., and Mallison, R. G., 'Some Temperature Effects on Stability and Carbon Formation in Low Temperature AC Plasma Conversion of Methane,' Cataly. Today, 89, 15-20(2004) https://doi.org/10.1016/j.cattod.2003.11.038
  9. Liu, C., Mallison, R. G., Lobban, L., 'Nonoxidative Methane Conversion to Acetylene over Zeolite in a Low Temperature Plasma,' J. Catal., 179, 326-334(1998) https://doi.org/10.1006/jcat.1998.2225
  10. Cohn, D. R., Ravinovich, A., Titus, C. H., and Bromberg, L., 'Near-term Possibilities for Extremely Low Emission Vehicles Using Onboard Plasmatron Generation of Hydrogen,' Int. J. Hydrogen Energy, 22(7), 715-723(1997) https://doi.org/10.1016/S0360-3199(96)00203-0
  11. Bromberg, L., Rabinovich, A., Alexeev, N., and Cohn, D. R., 'Plasma Reforming of Diesel Fuel,' MIT Plasma Science and Fusion Center Report PSFC-RR-99-4(1999)
  12. Bromberg, L., Cohn, D. R., Ravinovich, A., Surma, J. E., and Virden, J., 'Compact Plasmatron-boosted Hydrogen Generation Technology for Vehicular Applications,' Int. J. Hydrogen Energy, 24, 341-350(1999) https://doi.org/10.1016/S0360-3199(98)00013-5
  13. Bromberg, L., Cohn, D. R., Ravinovich, A., and Heywood, J., 'Emissions Reductions Using Hydrogen from Plasmatron Fuel Converters,' Int. J. Hydrogen Energy, 26, 1115-1121(2001) https://doi.org/10.1016/S0360-3199(01)00049-0
  14. Green, J. B., Jr., Domingo, N., Storey, J. M. E., Wagner, R. W., Armfield, J. S., Bromberg, L., Cohn, D. R., Ravinovich, A., and Alexeev, N., 'Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer,' SAE Technical Paper, 2000-01-2206(2000)
  15. Cohn, D. R., 'Commercialization of Environmental and Fuel Efficiency Technology Spinoffs of Fusion Research,' Fusion Energy Scientific Advisory Committee Meeting, Feb. 27-28(2002)
  16. Prieto, G., Okumoto, M., Shimano, K., Takashima, K., Katsura, S., and Mizuno, A., 'Reforming of Heavy Oil Using Nonthermal Plasma,' IEEE Transactions on Industry Applications, 25(5), 1484-1489(2001)
  17. Houseman, J. and Cerini, D. J., 'On-board Hydrogen Generator for a Partial Hydrogen Injection Internal Combustion Engine,' SAE Technical Paper, 740600(1974)
  18. Kirwan, J. E., Quader, A. A., and Grieve, M. J., 'Fast Start-up On-board Gasoline Reformer for Near Zero Emissions in Spark-Ignition Engines,' SAE Technical Paper, 2002-01-1011(2002)
  19. Shrestha, S. O. B., LeBlanc, G., Balan, G., and De Souza, M., 'A Before Treatment Method for Reduction of Emissions in Diesel Engines,' SAE Technical Paper, 2000-01-2971(2000)
  20. Tsolakis, A., Megartis, A., and Wyszynski, M. L., 'Application of Exhaust Gas Fuel Reforming in Compression Ignition Engines Fueled by Diesel and Biodiesel Fuel Mixtures,' Energy Fuels, 17, 1464-1473(2003) https://doi.org/10.1021/ef0300693
  21. Tsolakis, A. and Megartis, A., 'Catalytic Exhaust Gas Fuel Reforming for Diesel Engines-Effects of Water Addition on Hydrogen Production and Fuel Conversion Efficiency,' Int. J. Hydrogen Energy, 29, 1409-1419 (2004) https://doi.org/10.1016/j.ijhydene.2004.01.001
  22. Bromberg, L., Rabinovich, A., Alexeev, N., and Cohn, D. R., 'Plasma Reforming of Natural Gas,' American Chemical Society Meeting, Annaheim, CA (March 1999)
  23. Bromberg, L., Cohn, D. R., Heywood, J., Rabinovich, A., Hadidi, K., Alexeev, N., Samokhin, A., and Crane, S., 'Hydrogen Generation from Plasmatron Reformers and Use for Diesel Exhaust Aftertreatment,' Diesel Engine Emission Reduction Workshop, Newport, RI, August 24-28(2003)
  24. Tsolakis, A., Megartis, A., and Wyszynski, M. L. 'Low Temperature Exhaust Gas Fuel Reforming of Diesel Fuel,' Fuel, 83, 1837-1845(2004) https://doi.org/10.1016/j.fuel.2004.03.012