Low Temperature Suspension Polymerization of Methyl Methacrylate for the Preparation of High Molecular Weight Poly(methyl methacrylate)/Silver Nanocomposite Microspheres

  • Yeum, Jeong-Hyun (Department of Natural Fiber Science, Kyungpook National University) ;
  • Ghim, Han-Do (Department of Textile System Engineering, Kyungpook National University) ;
  • Deng, Yulin (School of Chemical and Biomolecular Engineering, Georgia Institute of Technology)
  • Published : 2005.12.01

Abstract

In order to prepare high molecular weight poly(methyl methacrylate) (PMMA)/silver nanocomposite microspheres, methyl methacrylate was suspension-polymerized in the presence of silver nanoparticles at low temperature with 2,2'-azobis(2,4-dimethylvaleronitrile) as an initiator. The rate of conversion was increased by increasing the initiator concentration. When silver nanoparticles were added, the rate of polymerization decreased slightly. High monomer conversion (about $85\%$) was obtained in spite of low polymerization temperature of $30^{\circ}C$. Under controlled conditions, PMMA/silver microspheres with various number-average degrees of polymerization (6,000-37,000) were prepared. Morphology studies revealed that except for normal suspension microspheres with a smooth surface, a golf ball-like appearance of the microspheres was observed, due to the migration and aggregation of the hydrophilic silver nanoparticles at the sublayer beneath the microsphere's surface.

Keywords

References

  1. J. Charnley, J. Bone, J. Surg., 42B, 28 (1960)
  2. G. Lewis, J. Biomed. Mater. Res., 38, 155 (1997) https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-C
  3. J. A. Planell, M. M. Vila, F. J. Gil, and F. C. M. Driessens in 'Acrylic Bone Cements, Encyclopedic Handbook of Biomaterials and Bioengineering', (D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwartz Eds.), pp.879-921, Marcel Dekker, New York, 1997
  4. E. J. Harper, M. Braden, and W. Bonfield, 7th Euro. Conf. Composite Mater., p.519, 1996
  5. H. W. Coover and J. M. McIntyre Jr. in 'Encyclopedia of Polymer Science and Engineering', (H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz Eds.), Vol. 1, pp.234-263, John Wiley and Sons, New York, 1985
  6. O. Nuyken and G. Lettermann in 'Handbook of Polymer Synthesis', (H. R. Kricheldorf Ed.), Part A, pp.223-336, Marcel Dekker, New York, 1992
  7. K. H. Kim, W. H. Jo, J. Y. Jho, M. S. Lee, and G. T. Lim, Fibers and Polymers, 4, 97 (2003) https://doi.org/10.1007/BF02875454
  8. J. W. Cho, S. H. Lee, J. H. So, J. Y. Jaung, and K. J. Yoon, Fibers and Polymers, 5, 239 (2004) https://doi.org/10.1007/BF02903007
  9. J. L. Luna-Xavier, E. Bourgeat-Lami, and A. Guyot, Colloid Polym. Sci., 279, 947 (2001) https://doi.org/10.1007/s003960100520
  10. J. Lee and M. Sena, Colloid Polym. Sci., 273, 76 (1995) https://doi.org/10.1007/BF00655677
  11. M. S. Fleming, T. K. Mandal, and D. R. Walt, Chem. Mater., 13, 2210 (2001) https://doi.org/10.1021/cm002007l
  12. F. Tiarks, K. Landfester, and M. Antonietti, Langmuir, 17, 5775 (2001) https://doi.org/10.1021/la0010572
  13. B. Erdem, E. D. Sudol, V. L. Dimonie, and M. El-Aasser, J. Polym. Sci., Polym. Chem., 38, 4419 (2000) https://doi.org/10.1002/1099-0518(20001215)38:24<4419::AID-POLA110>3.0.CO;2-X
  14. G. C. Carotenuto, Y. S. Her, and E. Matijevic, Ind. Eng. Chem. Res., 35, 2929 (1996) https://doi.org/10.1021/ie950721k
  15. M. Lira-Cantu and P. Gomez-Romero, Chem. Mater., 10, 698 (1998) https://doi.org/10.1021/cm970107u
  16. Y. Wang and N. Herron, Chem. Phys. Lett., 200, 71 (1992) https://doi.org/10.1016/0009-2614(92)87047-S
  17. R. K. Hailstone, J. Phys. Chem., 99, 4414 (1995) https://doi.org/10.1021/j100013a009
  18. T. Sun and K. Seff, Chem. Rev., 94, 857 (1994) https://doi.org/10.1021/cr00028a001
  19. H. Tada, K. Teranishi, Y. Inubushi, and S. Ito, Langmuir, 16, 3304 (2000) https://doi.org/10.1021/la991315z
  20. U. Nickel, A. zu Castell, K. Poppl, and S. Schneider, Langmuir, 16, 9087 (2000) https://doi.org/10.1021/la000536y
  21. T. Pal, J. Chem. Educ., 71, 679 (1994) https://doi.org/10.1021/ed071p679
  22. Y. Iwata, Zeolite News Lett., 13, 8 (1996)
  23. A. Oya, J. Antibac. Antifungal. Agents (Jpn), 24, 429 (1996)
  24. D. W. Hatchett, M. Josowicz, J. Janata, and D. R. Baer, Chem. Mater., 11, 2989 (1999) https://doi.org/10.1021/cm990365m
  25. C. J. Huang, C. C. Yen, and T. C. Chang, J. Appl. Polym. Sci., 42, 2237 (1991) https://doi.org/10.1002/app.1991.070420814
  26. Y. Gotoh, R. Igarashi, Y. Ohkoshi, M. Nagura, K. Akamatsu, and S. Deki, J. Mater. Chem., 10, 2548 (2000) https://doi.org/10.1039/b003899g
  27. Y. J. Zhu, Y. T. Qian, X. J. Li, and M. W. Zhang, Nanostruct. Mater., 10, 673 (1998) https://doi.org/10.1016/S0965-9773(98)00096-8
  28. Y. Yin, X. Xu, X. Ge, and Z. Zhang, Radiation Physics and Chemistry, 53, 567 (1998) https://doi.org/10.1016/S0969-806X(98)00190-X
  29. E. Duguet, M. Abboud, F. Morvan, P. Maheu, and M. Fontanille, Macromol. Symp., 151, 365 (2000) https://doi.org/10.1002/1521-3900(200002)151:1<365::AID-MASY365>3.0.CO;2-T
  30. X. Huang and W. J. Brittain, Macromolecules, 34, 3255 (2001) https://doi.org/10.1021/ma002404h
  31. J. W. Shim, J. W. Kim, S. H. Han, I. S. Chang, H. K. Kim, H. H. Kang, O. S. Lee, and K. D. Suh, Colloid Surf. A, 207, 105 (2002) https://doi.org/10.1016/S0927-7757(02)00044-4
  32. J. B. Jun and K. D. Suh, J. Appl. Polym. Sci., 90, 458 (2003) https://doi.org/10.1002/app.12676
  33. J. M. Hwu, T. H. Ko, W. T. Yang, J. C. Lin, G. J. Jiang, W. Xie, and W. P. Pan, J. Appl. Polym. Sci., 91, 101 (2004) https://doi.org/10.1002/app.13123
  34. J. H. Yeum, Q. Sun, and Y. Deng, Macromol. Mater. Eng., 290, 78 (2005) https://doi.org/10.1002/mame.200400313
  35. T. Nishikawa, M. Kamigaito, and M. Sawamoto, Macromolecules, 32, 2204 (1999) https://doi.org/10.1021/ma981483i
  36. G. Polacco, M. Palla, and D. Semino, Polym. Int., 48, 392 (1999) https://doi.org/10.1002/(SICI)1097-0126(199905)48:5<392::AID-PI154>3.0.CO;2-I
  37. W. S. Lyoo, S. K. Noh, J. H. Yeum, G. C. Kang, H. D. Ghim, J. Lee, and B. C. Ji, Fibers and Polymers, 5, 75 (2004) https://doi.org/10.1007/BF02875498
  38. M. Kurata and Y. Tsunashima in 'Polymer Handbook', 3rd ed. (J. Brandrup and E. H. Immergut Eds.), p.VII/13, John Wiley and Sons, New York, 1989
  39. G. Odian in 'Principles of Polymerization', Wiley-Interscience, New York, 1991
  40. J. H. Yeum, B. C. Ji, S. K. Noh, H. Y. Jeon, J. W. Kwak, and W. S. Lyoo, Polymer, 45, 4037 (2004) https://doi.org/10.1016/j.polymer.2004.03.077
  41. W. S. Lyoo, C. S. Park, J. H. Yeum, B. C. Ji, C. J. Lee, S. S. Lee, and J. Y. Lee, Colloid Polym. Sci., 280, 1075 (2002) https://doi.org/10.1007/s00396-002-0736-6
  42. J. H. Yeum, B. C. Ji, C. J. Lee, J. Y. Lee, S. S. Lee, S. S. Kim, J. H. Kim, and W. S. Lyoo, J. Polym. Sci., Polym. Chem., 40, 1103 (2002) https://doi.org/10.1002/pola.10199
  43. W. S. Lyoo, H. D. Ghim, J. H. Kim, S. K. Noh, J. H. Yeum, B. C. Ji, H. T. Jung, and J. Blackwell, Macromolecules, 36, 5428 (2003)
  44. B. C. Ji, G. C. Kang, H. D. Ghim, J. P. Kim, H. C. Kim, and W. S. Lyoo, J. Korean Fiber Soc., 38, 373 (2001)
  45. T. Vermeulen, G. M. Williams, and G. E. Langlois, Chem. Eng. Prog., 51, 85 (1955)