Advances In Air-Cooled Heat Exchanger Technology for Residential Air-Conditioning

  • Webb Ralph L. (Department of Mechanical Engineering, Pennsylvania State University, University Park) ;
  • Kim Nae-Hyun (Department of Mechanical Engineering, University of Incheon)
  • Published : 2005.12.01

Abstract

This paper describes the recent work on advanced technology concepts applied to air cooled heat exchangers for residential air-conditioning. The concepts include vortex generators for the air-side, micro-fin or flat tubes for the refrigerant-side. Advances in understanding of heat transfer mechanisms, predictive models are discussed.

Keywords

References

  1. Webb, R. L. and Kim, N. H., 2005, Principles of Enhanced Heat Transfer, 2nd ed., Taylor & Francis Pub., New York
  2. Kang, H. C. and Webb, R. L., 1998, Performance comparison enhanced fin geometries used in fin-and-tube heat exchangers, Proc. 1998 Int. Heat Transfer Conf., Korea
  3. Fiebig, M., Valencia, A. and Mitra, N. K, 1993, Wing type vortex generators for finand-tube heat exchangers, Exp. Thermal and Fluid Science, Vol. 7, pp.287-295 https://doi.org/10.1016/0894-1777(93)90052-K
  4. Fiebig, M., 1995, Vortex generators in compact heat exchangers, J. Enhanced Heat Transfer, Vol. 2, pp. 43-61 https://doi.org/10.1615/JEnhHeatTransf.v2.i1-2.60
  5. Fiebig, M., Mitra, N. K. and Dong, Y., 1990, Simultaneous heat transfer enhancement and flow loss reduction on fin-tubes, 9th Int. Heat Transfer Conf., Jerusalem, Vol. 4, pp. 51-56
  6. Torii, K, Kwak, K M. and Nishino, K, 2002, Heat transfer enhancement accompanying pressure-loss reduction with winglet.-type vortex generators for fin-tube heat exchangers, International Journal of Heat and Mass Transfer, Vol. 45, pp.3795-3801 https://doi.org/10.1016/S0017-9310(02)00080-7
  7. Lozza, G. and Merlo, U, 2001, An experimental investigation of heat transfer and friction losses of interrupted and wavy fins for fin-and-tube heat exchangers, Int. Journal of Refrigeration, Vol. 24, pp.409-416 https://doi.org/10.1016/S0140-7007(00)00035-9
  8. Valencia, A., Fiebig, M. and Mitra, N. K., 1996, Heat transfer enhancement by longitudinal vortices in a fin-tube heat exchanger element with flat tubes, Journal of Heat Transfer, Vol. 118, No.1, pp. 209-211 https://doi.org/10.1115/1.2824039
  9. O'Brien, J. E., Sohal, M. S. and Wallstedt, P. C., 2001, Local heat transfer and pressure drop for finned tube heat exchangers using oval tubes and vortex generators, Proceedings of the ASME, HTD-Vol.369-1, Y. Jaluria, ed., 2001 ASME International Mechanical Engineering Congress and Exposition, pp. 175-186
  10. Webb, R. L. and Iyengar, A, 2001, Oval finned tube heat exchangers - Limiting internal operating pressure, J Enhanced Heat Transfer, Vol. 8, pp. 147-158 https://doi.org/10.1615/JEnhHeatTransf.v8.i3.20
  11. Wang, C. C., Tsi, Y. M. and Lu, D. C. 1996, Heat transfer and friction characteristic of convex-louver fin-and-tube heat exchanger, Experimental Heat Transfer, Vol. 9, pp. 6178
  12. Min, J C. and Webb, R. L., 2000, Numerical investigation of effect of tube shape on airside heat transfer and pressure drop characteristics of a finned tube heat exchanger, Proc. 5th Int Symp. on Heat Transfer, Beijing, Aug. 12-16, 2000, pp. 719-724
  13. Thome, J R., 1996, Boiling of new refrigerants: A state-of-the-art review, Int. Journal of Refrigeration, Vol. 19, pp.435-457 https://doi.org/10.1016/S0140-7007(96)00004-7
  14. Newell, T. A. and Shah, R. K., 2001, An assessment of refrigerant heat transfer, pressure drop, and void fraction effects in microfin tubes, Int. Journal of HVAC&R, Vol. 7, No.2, pp. 125-154 https://doi.org/10.1080/10789669.2001.10391267
  15. Cavallini, A., Del Col, D., Longo, G. A. and Rossetto, L., 2000, Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes, Int. Journal of Refrigeration, Vol. 23, pp.4-25 https://doi.org/10.1016/S0140-7007(99)00032-8
  16. Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G. A., Rossetto, L. and Zilio, C., 2003, Condensation inside and outside smooth and enhanced tubes - A review of recent research, Int. Journal of Refrigeration, Vol. 26, pp.373-392 https://doi.org/10.1016/S0140-7007(02)00150-0
  17. Liebenberg, L., Bergles, A. E. and Meyer, J. P., 2000, A review of refrigerant condensation in horizontal microfin tubes, ASME AES- Vol. 40, pp. 155-168
  18. Yasuda, K, Ohizumi, K, Hori, M. and Kawamata, O., 1990, Development of condensing thermofin- HEX -C tube, Hitachi Cable Review, No.9, pp.27-30
  19. Chamra, L. M., Webb, R. L. and Randlett, M. R, 1996b, Advanced micro-fin tubes for condensation, Int. Journal of Heat and Mass Transfer, Vol. 39, pp. 1839-1846 https://doi.org/10.1016/0017-9310(95)00275-8
  20. Ito, M. and Kimura, H., 1979, Boiling heat transfer and pressure drop in internal spiralgrooved tubes, Bulletin of the JSME, Vol. 22, No. 171, pp. 1251-1257 https://doi.org/10.1299/jsme1958.22.1251
  21. Houfuku,M., Suzuki, Y. and Inui, K, 2001, High performance, light weight thermofin tubes for air conditioners using alternative refrigerants, Hitachi Cable Review, No. 20, pp.97-100
  22. Tsuchida, T., Yasuda, K, Hori, M.and Otani, T., 1993, Internal heat transfer characteristics and workability of narrow thermofin tubes, Hitachi Cable Review, No. 12, pp. 59-63
  23. Ishikawa, S., Nagahara, K and Sukumora, S., 2001, Heat transfer and pressure drop during evaporation and condensation of HCFC22 in horizontal copper tubes with many inner fins, Journal of Enhanced Heat Transfer, Vol. 9, No.1, pp.17-24 https://doi.org/10.1080/10655130213057
  24. Yang, C. Y. and Webb, R L., 1997, A predictive model for condensation in small hydraulic diameter tubes having axial microfins, Journal of Heat transfer, Vol. 119, pp. 776-782 https://doi.org/10.1115/1.2824182
  25. Yang, C.-Y. and Webb, R.L., 1996, Condensation of R -12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins, International Journal of Heat and Mass Transfer, Vol. 39, pp. 791-800 https://doi.org/10.1016/0017-9310(95)00150-6
  26. Webb, R. L. and Yang, C. Y., 1995, A comparison of R-12 and R-134a condensation inside small extruded aluminum plain and micro-fin tubes, 1995 Vehicle Thermal Management Systems Conference Proceedings, Mechanical Engineering Publications, London, pp.77-86
  27. Shah, M. M., 1979, A general correlation for heat transfer during film condensation inside pipes, Int. J. Heat Mass Transfer, Vol. 22, No.4, pp.547-556 https://doi.org/10.1016/0017-9310(79)90058-9
  28. Akers, W. W., Deans, H. A. and Crosser, O. K, 1959, Condensing heat transfer within horizontal tubes, Chem. Eng. Progress Symp, Series, Vol. 55, No. 29, pp. 171-176.
  29. Webb, R. L. and Ermis, K., 2001, Effect of hydraulic diameter on condensation of R134a in flat, extruded aluminum tubes, Journal of Enhanced Heat Transfer, Vol. 8, No. 2, p.77 https://doi.org/10.1615/JEnhHeatTransf.v8.i2.20
  30. Kim, N.-H., Cho, J.-P. and Kim, J.-O., 2000, R-22 condensation in flat aluminum multichannel tubes, Journal of Enhanced Heat Transfer, Vol. 7, No.6, p. 427
  31. Kim, N.-H., Cho, J.-P., Kim, J.-O. and Youn, B., 2003, Condensation heat transfer of R-22 and R-410A in flat aluminum multi-channel tubes with or without microfins, Int. Journal of Refrigeration, No. 26, pp. 830-839 https://doi.org/10.1016/S0140-7007(03)00049-5
  32. Koyama, S., Kuwahara, K, Yamanoto, K. and Nakashita, K., 2002, An experimental study on condensation of R134a in a multi -port extruded tube, Ninth International Refrigeration and Air Conditioning Conference at Purdue, Paper R6-2
  33. Haraguchi, H., Koyama, S. and Fujii, T., 1994, Condensation of refrigerants HCFC22, HFC134a and HCFC123 in a horizontal smooth tube (2nd Report, Proposal of empirical expressions for the local heat transfer coefficients), Trans. JSME(B), Vol. 60, No. 574, pp. 245-252 (in Japanese)
  34. Moser, K. W., Webb, R. L. and Na. B., 1998. A new equivalent Reynolds number model for condensation in smooth tubes, Journal of Heat Transfer, Vol. 120, No.2, pp.410-417 https://doi.org/10.1115/1.2824265
  35. Zhang, M. and Webb, R. L., 2001, Correlation of two-phase friction for refrigerants in small-diameter tubes, Exp. Thermal Fluid Science, Vol. 25, pp. 131 -139 https://doi.org/10.1016/S0894-1777(01)00066-8