Yeast내에서 탄저병 원인균인 Bacillus anthracis의 치사독소인 Lethal Factor 단백질 발현

Expression of Anthrax Lethal Factor, a Major Virulence Factor of Anthrax, in Saccharomyces cerevisiae

  • Hwang Hyehyun (Department of Chemistry, College of Natural Science, Hanyang University) ;
  • Kim Joungmok (Department of Chemistry, College of Natural Science, Hanyang University) ;
  • Choi Kyoung-Jae (Department of Chemistry, College of Natural Science, Hanyang University) ;
  • Chung Hoeil (Department of Chemistry, College of Natural Science, Hanyang University) ;
  • Han Sung-Hwan (Department of Chemistry, College of Natural Science, Hanyang University) ;
  • Koo Bon-Sung (Microbial Function Team, National Institute of Agricultural Biotechnology, RDA) ;
  • Yoon Moon-Young (Department of Chemistry, College of Natural Science, Hanyang University)
  • 발행 : 2005.12.01

초록

Bacillus anthracis는 탄저병의 병원체이다. 탄저병의 독소는 Bacillus anthracis가 가진 세가지 독소로 이루어져 있다. protective antigen (PA), lethal factor (LF)그리고 edema factor (EF)로 구성되어 있다. PA는 세포수용체와 결합하여 활성화 과정을 거친 후 LF 흑은 EF를 세포질 안으로 이동시켜 주는 역할을 한다. LF는 금속이온 $(Zn^{2+})$ 의존적 단백질 가수분해 효소로써 탄저병에 감염된 동물들의 치사독소로 작용하게 된다. 따라서 LF에 대한 특성 분석 및 억제재 개발에 관한 연구는 탄저치료제 개발에 매우 중요한 과정이라 할 수 있다. 본 연구에서는 탄저독소의 치료제 개발을 위해 선행되어야 하는 LF 고처리량 활성검증방법 및 저해제 선별에 더 높은 효율을 가지기 위해 이러한 시스템 방법 등을 이용하여 세포내 검정방법의 기초 자료를 마련하고자 하였다. 이를 위하여 yeast를 숙주로 한 LF 발현 vector의 구축과, 구축한 발현 시스템을 yeast에 형질전환 하여 plasmid의 안정성 및 LF유전자의 발현을 확인하였다. 본 연구는 LF유전자의 발현을 진핵세포 내에서 처음으로 시도했으며, 세포내 검증 시스템 도입의 기초적 자료를 제공하였다. Yeast내에서의 LF의 발현은 탄저병의 저해제 선별이나 활성측정검증을 생체 내에서 용이하게 할 수 있다는 가능성을 나타냈다.

Anthrax is an infectious disease caused by the gram-positive bacterium, Bacillus anthracis. Anthrax toxin is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF onto the cytosol. LF is a zinc-dependent metalloprotease, which is a critical virulence factor in cytotoxicity of infected animals. Therefore, it is of interest to develop its potent inhibitors for the neutralization of anthrax toxin. The first step to identify the inhibitors is the development of a rapid, sensitive, and simple assay method with a high-throughput ability. Much efforts have been concentrated on the preparation of powerful assays and on the screening of inhibitors using these system. In the present study, we have tried to construct anthrax lethal factor in yeast expression system to prepare cell-based high-throughput assay system. Here, we have shown the results covering the construction of a new vector system, subcloning of LF gene, and the expression of target gene. Our results are first trial to express LF gene in eukaryote and provide the basic steps in design of cell-based assay system.

키워드

참고문헌

  1. Beauregard, K.E., R.J. Collier, and J.A. Swanson. 2000. Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization. Cell. Microiol. 2, 251-258 https://doi.org/10.1046/j.1462-5822.2000.00052.x
  2. Cieslak, T.J. and E.M. Eitzen. 1999. Clinical and epidemiological principles of Anthrax. EID. 5, 552-555 https://doi.org/10.3201/eid0504.990418
  3. Collier, R.J. and J.A. Young. 2003. Anthrax toxin. Annu. Rev. Cell. Dev. Biol. 19, 45-70 https://doi.org/10.1146/annurev.cellbio.19.111301.140655
  4. Dixon, T.C., M. Meselson, J. Guillemin, and P.C Hanna. 1999. Anthrax. Engl. J. Med. 341, 815-826 https://doi.org/10.1056/NEJM199909093411107
  5. Drum, C.L., S.Z. Yan, J. Bard, Y.Q. Shen, D. Lu, S. Soelaiman, Z.Grabarek, A. Bohm, and W.J. Tang. 2002. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. Nature. 415, 396-402 https://doi.org/10.1038/415396a
  6. Duesery, N.S., C.P. Webb, S.H. Leppla, V.M. Gordon, K.R. Klimpel, T.D. Copeland, N.G. Ahn, M.K. Oskarsson, K. Fukasawa, K.D. Paull, and C.F. Bande Woude. 1998. Protolytic inactivation of MAP-Kinase-kinase by anthrax lethal factor. Science. 280, 734-737 https://doi.org/10.1126/science.280.5364.734
  7. Ezzell. J.W. and S.L. Welkos. 1999. The capsule of bacillus anthacis, a review. J. Appl. Microbiol. 87, 250 https://doi.org/10.1046/j.1365-2672.1999.00881.x
  8. Ezzell, J.W. and T.G. Abshire. 1988. Immunological analysis of cell Associated antigens of Bacillus anthracis. Infect. Immun. 56, 349-356
  9. Green, B.D., L. Battisti, T.M. Koehler, C.B. Thorne, and B.E. Ivins. 1985. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49, 291-297
  10. Grossier, F. and M. Mock. 2001. Toxins of Bacillus anthracis. Toxiconl. 39, 1747-1755 https://doi.org/10.1016/S0041-0101(01)00161-1
  11. Klimpel, K.R., S.S. Molloy, G. Thomas, and S.H. Leppla. 1992. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc. Natl. Acad. Sci. USA. 89, 10277-10281
  12. Leppla, S.H. 1982. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA. 79, 3162-3166
  13. Leppla. S.H. 1988. Production and purification of anthrax toxin, in: Methods in Enzymology. Academic press. 165, 103-116
  14. Makino, S., M. Watarai, H. I. Cheun, T. Shirahata, and I. Uchida. 2002. Effect of the lower molecular capsule released from the cell surface of Bacillus anthracis on the pathogenesis of anthrax. J. Infect. Dis. 186, 227-233 https://doi.org/10.1086/341299
  15. Mikesell, O.P., B.E. Ivins, J.D. Ristroph, and T.M. Dreier. 1983. Evidence for plasmid mediated toxin production in Bacillus anthracis. Infect. Immun. 39, 371-376
  16. Mock, M. and A. Fouet. 2001. Anthrax. Annu. Rev. Microbiol. 55, 647-671 https://doi.org/10.1146/annurev.micro.55.1.647
  17. Mogridge, J., K. Cunningham, and R.J. Collier. 2002. Stoichiometry of anthrax toxin complexes. Biochemistry 41, 1079-1082 https://doi.org/10.1021/bi015860m
  18. Morton, N. and M.D. Swartz. 2001. N. Engl. J. Med. 345, 1621- 1626 https://doi.org/10.1056/NEJMra012892
  19. Smith, H. and J. Keppie. 1954. Observations on experimental anthrax: demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature 173, 869-870 https://doi.org/10.1038/173869a0
  20. Turnbull, P.C.B., M.G. Broster, J.A. Carman, R.J. Manchee, and J. Melling. 1986. Development of antibodies to protective antigen and lethal factor components of anthrax toxin in humans and guinea pigs and their relevance to protective immunity. Infect Immun. 52, 356-363
  21. Vitale, G., R. Pellizzari, C. Recchi, G. Napolitani, M. Mock, and C. Montecucco. 1998. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphoryation of MAPKs in cultured macrophages. Biochem. Biophys. Res. Commun. 38, 706-711