On Realization of 2D Discrete Systems by Fornasini-Marchesini Model

  • Xu Li (Faculty of Systems Science and Technology, Akita Prefectural University) ;
  • Wu Liankui (Department of Automatic Control, Beijing Institute of Technology) ;
  • Wu Qinghe (Department of Automatic Control, Beijing Institute of Technology) ;
  • Lin Zhiping (School of EEE, Nanyang Technology University) ;
  • Xiao Yegui (Department of Management and Information Systems, Hiroshima Prefectural University)
  • Published : 2005.12.01

Abstract

In this paper, we propose a constructive realization procedure for 2D systems which may lead to a Fornasini-Marchesini local state-space model with much lower order than the existing realization procedure given by Bisiacco et al. Nontrivial examples are illustrated and the conditions for minimal realization are also discussed.

Keywords

References

  1. N. K. Bose, Multidimensional Systems Theory and Applications (second edition), Dordrecht, Kluwer, The Netherlands, 2003
  2. J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1990
  3. W. S. Lu and A. Antoniou, Two-Dimensional Digital Filters, Marcel Dekker, Inc., 1992
  4. S. Basu, 'Multidimensional causal, stable, perfect reconstruction filter banks,' IEEE Trans. Circuits Syst.–I: Fund. Theory and Appl, vol. 49, pp. 832-842, 2002 https://doi.org/10.1109/TCSI.2002.1010038
  5. R. P. Roesser, 'A discrete state-space model for linear image processing,' IEEE Trans. on Automatic Control, vol. AC-20, no. 1, pp. 1-10, 1975
  6. E. Fornasini and G. Marchesini, 'State-space realization theory of two dimensional filters,' IEEE Trans. on Automatic Control, vol. AC-21, no. 4, pp. 484-491, 1976
  7. E. Fornasini and G. Marchesini, 'Computation of reachable and observable realization of spatial filters,' Int. J. Control, vol. 25, pp. 621-635, 1977 https://doi.org/10.1080/00207177708922258
  8. E. Fornasini and G. Marchesini, 'Doublyindexed dynamical systems: State-space models and structural properties,' Math. Syst. Theory, vol. 12, pp. 59-72, 1978 https://doi.org/10.1007/BF01776566
  9. R. Eising, 'Realization and stabilization of 2-D systems,' IEEE Trans. on Automatic Control, vol. AC-23, no. 5, pp. 793-799, 1978
  10. M. Bisiacco, E. Fornasini, and G. Marchesini, 'On some connections between BIBO and internal stability of two-dimensional filters,' IEEE Trans. Circ. Syst., vol. 32, pp. 948-953, 1985 https://doi.org/10.1109/TCS.1985.1085801
  11. S. H. Zak, E. B. Lee, and W. S. Lu, 'Realizations of 2-D filters and time delay systems,' IEEE Trans. Circ. Syst., vol. CAS-33, pp. 1241-1244, 1986
  12. S. J. Varoufakis, G. E. Antoniou, and P. N. Parakevopoulos, 'On the minimal state space realization of all-pole and all-zero 2-D systems,' IEEE Trans. Circuits Syst., vol. 34, pp. 289-292, 1987 https://doi.org/10.1109/TCS.1987.1086131
  13. M. Bisiacco, E. Fornasini, and G. Marchesini, 'Dynamic regulation of 2D Systems: A statespace approach,' Linear Algebra and Its Applications, vol. 122/123/124, pp.195-218, 1989
  14. S. Venkataraman and B. C. Levy, 'State space representations of 2-D FIR lossless transfer matrices,' IEEE Trans. Circ. Syst. II, vol. 41, pp. 117-132, 1994 https://doi.org/10.1109/82.281843
  15. G. E. Antoniou, '2-D lattice discrete filters: Minimal delay and state space realization,' IEEE Signal Processing Letters, vol. 8, pp. 23- 25, 2001 https://doi.org/10.1109/97.889640
  16. S. Y. Kung, B. C. Levy, M. Morf, and T. Kailath, 'New results in 2-D systems theory, Part II: 2-D state-space models – realization and the notions of controllability, observability, and minimality,' Proc. IEEE, vol. 65, pp. 945-961, 1977
  17. S. K. Mitra, A. D. Sagar, and N. A. Pendrgrass, 'Realization of two-dimensional recursive digital filters,' IEEE Trans. Circuits Syst., vol. CAS-22, no. 3, pp. 177-184, 1975