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ABSTRACT

This paper investigates the application of the computer method COMSOAL (Computer Method of
Sequencing Operations for Assembly Lines) to the process routing (PR) problem with multiple
objectives. In any computer aided process planning (CAPP) system, one of the most critical activities
for manufacturing a part could be to generate the sequence that optimizes production time, produc—
tion cost, machine utilization or with multiple these criteria. The COMSOAL has been adopted to find
the optimum sequence of operations that optimizes two major conflicting criteria; production cost and
production quality. The COMSOAL is here slightly modified to simultaneously generate and evaluate
a set of possible solutions (called as population) instead of processing a solution stepwise in each
iteration. The significant features of the COMSOAL include: no parameters settings needed, and a
guarantee of feasible solutions. Experimental results show that COMSOAL is a simple but powerful
method to quickly generate multiple feasible solutions which are as good as the ones obtained from
several other well—known process routing algorithms.
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1. INTRODUCTION

The Process Routing (PR) refers to activities to determine the optimum production
sequence which converts a raw material into a completed part through multi-stage
process given a certain criteria such as minimum cost, minimum time, maximum
quality, maximum machine utilization, or with multiple these criteria. The implicit
enumeration of all these alternatives can be formulated using network flow. Net-
work flow formulation has been widely used to find the best process routing under
single objective criterion where the problem is equivalent to solving the Shortest
Path Problem (SPP) with precedence constraints. However, since the network flow
that has been implemented in this study contains two conflicting objectives, COM-
SOAL heuristic approach has been adopted as a solution method.

Recently, several GA based approaches for the PR problem have been re-
ported [2, 6, 8]. However, a major drawback of the GA based approach is a signifi-
cant time consuming to find a proper set of genetic parameters such as population
size, crossover rate and mutation rate. This is mainly because the performance of
the GAs highly relies on the combination of the genetic parameters.

The COMSOAL, originally a solution approach for the assembly line balanc-
ing problem, is a computer heuristic that can be used to generate a feasible solu-
tion to the process routing problem at each iteration of the heuristic. A solution
methodology of repeatedly running COMSOAL will result in many feasible solu-
tions from which the best is chosen. The significant features of the COMSOAL
include that the algorithm does not need any sensitive parameters settings and
always generates feasible solutions. Therefore, the COMSOAL provides a rela-
tively simple but powerful solution methodology to be applied in PR field. This
solution approach now becomes viable given the increased speed of inexpensive
computers.

The COMSOAL is here slightly modified to generate and evaluate simultane-
ously a set of solution population instead of a solution at each iteration. There-
fore, major issue of this study is to adopt the COMSOAL in the PR problem and to
report the findings and corresponding modifications.

2. PR PROBLEM DESCRIPTION

The PR usually consists of a series of machining operations, such as turning,
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drilling, grinding and so on, to transform a raw material into its final shape. The
whole process can be divided into several stages. At each stage, there can be a set
of manufacturing alternatives. The PR problem is to find the optimal process
routing among all possible alternatives given a certain criteria such as minimum
cost, minimum time, maximum quality, maximum machine utilization, or under
multiple of these criteria which are defined on the operations to be chosen. In this
study, two conflicting objectives are considered to be achieved; i.e., minimizing
production cost and maximizing production quality.
The bi-criteria PR problem can be defined as follows:

min C(x,,x,, ,x,) = Z::luk(sk,xk)

max Q(xlyxza"'yxn) :zz:lvk(sk’xk) (1)

st. x, € D,(s,)

where s, is the some state at stage k, D,(s,) is the set of possible states to be
chosen at stage &k, k=1,2,---,n,and let x, be the decision variable to determine
which state to choose at stage k, obviously x, e D,(s,), k=1,2,---,n. u,(s,,x,)
and v,(s,,x,) represent the criterion to determine x, under state s, at stage

k, usually defined as real number such as cost, time or quality, and so on.

3. AMODIFIED COMSOAL APPROACH

COMSOAL was first developed by Arcus [1] as a computer method to solve the
assembly line balancing problem. While most references to COMSOAL are in the
assembly line balancing area, a few papers discuss the applications of COMSOAL
to the other problems such as resource assignment, Depuy and Whitehouse [3]
and vehicle routing, Lee [4]. Whitehouse [7] discusses the application of COM-
SOAL to resource allocation and finds the COMSOAL results at each iteration to
be fairly stable even though only random sampling is used to choose the next ac-
tivity to be scheduled. As mentioned previously, since fast, inexpensive computers
have become readily available, COMSQAL is worthwhile to be reexamined as a
possible solution methodology for the PR problem.

As a solution method, COMSOAL quickly generates multiple feasible solu-
tions and uses the best solution as its final reported result. To schedule processes
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for the PR problem, COMSOAL generates an availability list. This list contains
those processes in the manufacturing alternatives that could be assigned next. To
appear on this list, the processes must have met all precedence. The next process
to be scheduled is randomly chosen from this availability list and then a new
availability list is formed correspondingly to reflect the chosen process. COM-
SOAL continues in this fashion until all required processes have been scheduled.

The original COMSOAL has been slightly modified to accelerate the comput-
ing time in this study. The modification is basically done in two aspects; generat-
ing and evaluating solutions. A set of PRs can be randomly formed in parallel us-
ing state permutation encoding without forming availability list.

A set of possible solutions (so called ‘population’) is evaluated in parallel in-
stead of a solution at a time at each iteration in original COMSOAL.

Finally, the two conflicting objective values from the current iteration are
compared to the ones obtained from the previous iteration and the non-dominant
solutions are being kept. This process continues until the maximum number of
iterations is reached.

3.1 Generating Possible Solutions

In the network flow representation shown in Figure 1, the PR can be naturally
identified by indicating which node or state is chosen for a particular operation at
each processing stage. Here, a stage stands for a specific process required in every
process sequence. A state stands for the one of the alternative machine tools
which can be used in the corresponding stage. The alternative states at each
stage can be expressed by a series of integers to indicate the node or state. If a
state for an operation is chosen at some stage for the PR, then its corresponding
integer for that node or state can be assigned whereas the integer is within the
number of possible states at that stage. Therefore, the PR solution can be con-
cisely encoded in a state permutation format by concatenating all the set states of
the stages [8].

As there is always only one state to be chosen at the last stage, it need not be
indicated in the encoding. This state permutation encoding is one-to-one mapping
for the PR problem. As to the population for an n-stage PR problem, each individ-
ual is a permutation with n-1 integers whereas the each integer is generated ran-
domly within the number of all possible states at the corresponding stage. In Fig-
ure 1, the dotted arrow line indicates a possible PR path which is represented by
(1 3 2) in state permutation format.
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State Permutation Format

Figure 1. Example Network Flow

3.2 Pareto Solutions

Since the two objectives (minimum production cost and maximum production
quality) usually conflict with each other in practice, we can only calculate each
objective value of the problem but can not simply evaluate both objective values
at the same time. In addition, these two factors are non-commensurate because
they can not be measured on the same scale or unit. In other words, we can not
obtain the absolute optimal solution, but we can only get the Pareto optimal solu-
tions.

Figure 2 shows the example of Pareto optimal solutions. In Figure 2, the so-
lutions A, B, and C are Pareto optimal (or nondominated) solutions since solution
E is dominated by the B and D is dominated by the C.

15
10 A2, 9)
| E-(7, 8)
B-(4, 6)
m D-(9, 5)
5 { c-(8,4) 0
]

0 T |

0 5 10

Figure 2. Example Pareto Optimal Solutions
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Given a set of feasible solutions X for the problem, solution x € X is denoted
as the Pareto optimal solution (or nondominated solution) for the problem if and
only if there is no any other solution x € X, satisfying the following conditions:

V,(x)<V,(x)  for some qe{l,2,p}

, 2
V() <V, (x) for all k=gq

Assuming minimization problem: Min V4(x), k=1,2, ..., p, there are respec-
tively p optimal solution %), j=1, 2, ... , p, and corresponding objective value:

ij:Vk(Xj),k= 1, 2’..., P, j:l’ 2,...,p

Pareto stratum (or Pareto frontier) are then identified for a population.
Among the solutions generated in a population, nondominated solutions which
form a Pareto stratum are filtered and kept. This process is repeated through all
the iterations. Only individuals which are not dominated by any other individuals
can be kept up to the end. The more the number of iterations, the more the num-
ber of Pareto solutions likely maintains.

3.3 Modified COMSOAL Procedure

Figure 3 shows a Flowchart for the modified COMSOAL algorithm and a sum-
mary of the modified COMSOAL procedure follows:

[Step 1] Randomly generate a population of possible solutions using the state
permutation encoding within the number of all possible states at the
corresponding stage.

[Step 2] Calculate the two objective values respectively for the population.

[Step 3] Find the Pareto stratum in a current population based on the two objec-
tive values. If the Pareto stratum is the first one, save the stratum and
then go to [Step 1]. Otherwise, go to [Step 4].

[Step 4] Test the dominance between the current Pareto stratum and the previ-
ous one. Then update and save the resulting Pareto stratum as a cur-
rent one to reflect the test result.

[Step 5] If the number of current iteration is equal to the number of maximum
iteration, print the current Pareto stratum and stop. Otherwise, in-
crease the current iteration number by 1 and go to [Step 1].

The number of iterations used is a user defined variable. Clearly the num-
ber of iterations from which the better solution is chosen is a variable of interest.
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More iterations will give COMSOAL a chance to find a better solution; however,
the run time of the procedure will also increase.

While iter < MAXiter

Input parameters

[

v

Iter = iter + 1

T

Generating possible solutions
in population

l

Calculate the two objective values

l

Find Pareto stratum

No

Save current solutions

Test & Update dominance between
Current solutions and previous ones

v

Output current solution as best ones

Figure 3. Flowchart of Modified COMSOAL Algorithm

4. NUMERICAL ANALYSIS

The three different levels of example size have been used in this study: a small

size example (SSE), medium size example (MSE), and large size example (LSE).

The data set of SSE has been taken from the known literature to be compared

with GA’s results in terms of solution’s quality as well as computing speed [8].

The data sets of MSE and LSE have been randomly extended from the SSE’s to
test the COMSOAL’s performance in terms of computing speed. All of the three
experiments have been repeated 20 times each to obtain average performance

values.
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4.1 A Small Size Example

The numerical example with single objective reported by Awadh et al. [2] has
been adopted in this study. Some random values have been added to the example
in order to serve as a second objective. The problem consists of 7 stages, 24 nodes,
80 arcs, and thus the total number of 1,440 possible process routings.

Figure 4 shows the example network and the corresponding two attribute
values. In the network, optimum path for each objective which has been obtained
using a SPP package is marked only for comparison purpose.

The dotted line stands for the least cost routing path(1 -1 —>1—-53 > 2>
1). The thick line stands for the maximum-quality routing path (3 >3 >3 —>2 >
2 — 2). The first objective, F1 was to find the least cost and the second, F2 to find
the maximum quality process routing among all possible paths in the network.
Here, the F1 is modified to be maximization problem as F1 = U — f1. Where the U
is the some big number greater or equal to the maximum cost value (in this spe-
cific example, 150) and f1 is the total cost for a specific routing path. Thus, the
two objectives F1 and F2 now become both maximization problems.

Figure 4. The Example Network Flow with Two Attribute Values: Cost and Quality

The experiment is performed in two ways: i.e., (i) number of iterations from 6,
10, 20, 30, 40, 50, 60, 70, 80, 90, 100,110, 120, and 200 for a fixed population size
50 and (ii) number of iterations from 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60,
and 100 for a fixed population size 100. The experiment is repeated 20 times each
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for the various parameters set. There was no difference in terms of the number of
Pareto solutions found and their quality between the corresponding two ways ex-
cept a slightly shorter running time at the first case. When the number of itera-
tions reached at 20 and a population size 50, the solution quality becomes reason-
able but the number of Pareto solutions found in between 12~16 were still not
enough. When the total number of solutions tested (= population size x number of
iterations) reached at 4,000 (50x80 or 100x40), the number of Pareto solutions
found and the solution quality both became reasonable and stable: i.e., mostly 19
solutions found and all the same and consistent routing resulted.

Table 1 shows average number of solutions obtained at each iteration for the
experiment (i) case. Correspondingly, Figure 5 shows a plot for the average num-
ber of Pareto solutions obtained at given iterations.

In Table 1, the first column from the left represents the number of iterations
applied, second column for the computing time in seconds, and the last for the
average number of Pareto solutions obtained from the 20 trials.

Figure 6 shows a sample plot of the final results obtained at the end of 80t
iterations for the given population size, 50. The x-axis gives the total cost from
the PR found, while on the y-axis the PR quality is given.

When the total number of solutions tested is greater than 5000, the results
converge and are always the same as given in Figure 6.

Table 1. Average Number of Solutions Obtained at Each lieration (POP_SIZE = 50)

Number of iterations Time(sec) Average number of solutionsT

6 28 9.2
10 .54 9.1
20 1.21 124
30 1.76 14.5
40 2.47 15.0
50 3.14 16.3
60 3.84 17.2
70 4.34 16.2
80 4.95 18.3
90 5.50 18.6
100 6.71 18.6
110 7.40 18.8
120 8.52 18.8
200 14.89 18.8
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Figure 5. A Plot for the Average Number of Solutions Obtained at Given lterations

Pareto Solutions

700 i j
Upper bound
L ¢ % . 4
600 e o - (77,631)
L
..
500 * 1 .
N
= 400
c
[
£ 300 1
200[ ]
100 1

0 20 40 60 80 100
F1 (cost)
Figure 6. A Sample Plot of the Pareto Solutions Obtained at (MAX_TER=80 AND
POP_SIZE=50)

Thus we consider the results closely reached at the optimum. The upper
bound (77, 631) was calculated using a SPP package for each of the two objectives
individually. The figure clearly indicates that the Pareto frontier converges near
to the upper bounds 4s close as possible.

Table 2 shows the corresponding 19 different Pareto solutions in Figure 4 in-
cluding two different routings with the same pair of objective values. The two ex-
treme points are (28, 631) and (77, 507), which equal the upper bound value in
one of two objectives. Now, the user can choose one among the 19 solutions based

on the user’s specific company environment.
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These results are exactly the same one that is obtained at the previous re-
search, Lee [5] using multi-objective Genetic Algorithm. The average run time
took 4~5 seconds for this specific example. This is much shorter time than the one
of the GA which took about 14 seconds [5]. As a result, COMSOAL provided the
same quality solutions with around one third computing times comparing to GA.

Table 2. Pareto Quasi—Optimal Solutions Obtained at the Given Parameters Set

Fl(cost) 1 F2(quality) ‘ Pareto solutions
28 631 333222
42 626 322322
43 616 324322
47 615 233322
51 605 311522
55 603 233122
59 597 244322
62 585 144322,244522
64 577 244422
65 573 144522
67 565 144422
68 557 244321
71 545 244521,144321
73 537 244421
74 533 144521
76 525 144421
77 507 111321
[— Parameters Maxiter=80, Population=50(Run time=4.9 sec)

Furthermore, COMSOAL always guarantees not only feasible solutions, but
also no sensitive parameter selections needed, while GA usually needs lots of time
consumption to find a proper combination of parameters.

The algorithm was programmed using Matlab software and operated at the
Pentium IV and 128 MB RAM PC.

4.2 A Medium Size Example

Here, we used a set of 7 stages example which is basically modified from the SSE.
Each stage was extended randomly so that the 7 stages consisted of 4, 6, 5, 7, 4,
and 5 states in order except the last one. In other words, this example problem
consists of 7 stages, 33 nodes, and thus the total number of 16,800 possible proc-
ess routings. Figure 7 shows the data set of cost and quality in each stage.



56 LEE

stagel_c=[5,7,11,14]; % cost data for each state in each stage

stage2_c=[4,3,12,15,7,8; 3,2,8,5,2,4; 8,11,12,6,1,16; 10,1,5,15,13,15];

stage3_c=[8,11,14,10,6; 8,3,10,6,10; 11,4,9,4,10; 12,15,10,5,3; 9,12,8,11,1; 8,7,11,14,13];

stage4_¢=[12,10,7,5,11,14,4; 8,14,1,4,8,9,6; 7,9,10,14,15,1,15; 10,4,11,15,11,15,12; 4,8,
6,12,6,3,14]; ‘

stage5_c=[12,10,7,8; 4,15,6,8; 8,10,14,9; 9,7,3,8; 10,6,4,10; 12,14,9,8; 11,14,8,6];

stage6_c=[14,10,8,9,12; 10,15,11,12,14; 10,5,9,8,8; 4,6,10,7,9];

stage7_c=[7,4,9,10,13];

stagel_q=[90,50,64,80]; % quality data for each state in each stage

stage2_q=[73,66,70,88,69,58; 70,66,54,72,77,60; 72,65,88,96,75,84; 68,57,93,87,56,62];

stage3_q=[58,72,66,80,90; 60,98,54,77,88; 81,66,76,52,75; 72,85,70,89,63; 80,70,66,66,
90; 58,55,55,66,55];

staged_q=[87,65,70,58,72,68,56; 58,67,66,55,67,92,77; 66,67,78,99,90,65,93; 80,76,97,88,
88,54,67; 90,55,55,90,90,78,90];

stageb_q=[66,87,58,61; 55,53,90,81; 66,61,90,60; 65,66,90,65; 72,78,70,71; 66,88,90,66;
83,99,60,55];

stage6_q=[65,83,66,70,77; 82,55,88,70,75; 73,88,98,80,82; 88,99,89,77,76];

stage7_q=[70,60,90,82,78];

Figure 7. Cost and Quality data set used in each state in each stage

When the total number of solutions tested reached 25,000, the results con-
verged. The number of Pareto solutions found and the solution quality both became
reasonable and stable: i.e., mostly 11 solutions found. The Figure 8 shows a sample
plot of the final results obtained at the end of 25,000 iterations (50x500). The Table
3 shows a summary of the results. The calculated upper bound is (123, 642). The
average run time took 20 seconds with Pentium III 930MHz, 256 RAM PC.

Pareto Solutions

700
upper bound

- —+
600 L .. . (123,642) |

500 - {

400 1

F2 (quality)

300 b

200 1

100 N

0 50 100 150
F1 (cost)

Figure 8. A Sample Plot of the Pareto Solutions Obtained at 25,000 loops
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Table 3. Results Summary of Medium Size Example (10 Runs)

33 nodes, total number of possible solutions = 16,800 —!

Number of possible ~ solutions (no. of states in 7 stages =4, 6,5, 7, 4, 5, 1)
Parameters used population size =50, max no. of iterations =500
Average number of solutions 11

Average computing times 20 seconds

4.3 A Large Size Example

Here, we used the 8 stages example where only the last stage has been added as
10 nodes from the MSE. Consequently, this example problem consists of 8 stages,
43 nodes, and thus the total number of 168,000 possible process routings. Figure
9 shows the data set of cost and quality in the last two stages.

% cost data for each state in each stage
stage7_c=[6,10,14,11,8,11,4,9,4,10;10,6,10,3,8,12,15,10,5,4; 8,7,11,14,13,1,11,8,12,9;

9,6,12,5,8,10,7,7,10,6; 13,5,8,8,10,9,7,7,11,9];
stage8_¢=[10,15,4,3,12,8,5,11,9,7];

% quality data for each state in each stage

stage7_q=[90,80,66,72,58,75,52,76,66,31; 88,77,54,98,60,72,85,70,89,63; 55,66,55,72,58,
80,70,65,93,86; 57,99,60,70,80,66,79,90,56,82; 80,66,58,88,90,65,76,87,59,66];

stage8_q=[84,57,67,62,98,73,50,86,90,88];

Figure 9. Cost and Quality data set used in each state in last two stages

When the total number of solutions tested reached 200,000, the results con-
verged. The number of Pareto solutions found and the solution quality both be-
came reasonable and stable: i.e., mostly 16 solutions found. The Figure 10 shows
a sample plot of the final results obtained at the end of 200,000 loops (50x4000).
The Table 4 shows a summary of the results. The calculated upper bound is (121,
735). The average run time took 191 seconds with Pentium III 930MHz, 256 RAM
PC.

It is expected that the bigger sized example is applied, the performance in
terms of average run time could be improved since the algorithm structure is
simple compare to other methods such as GA. Depuy and Whitehouse [3] proves
this in his previous research by reporting for the COMSOAL to give better results
for large sample sizes than other, more traditional, resource allocation heuristics.
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Pareto Solutions
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Figure 10. A Sample Plot of the Pareto Solutions Obtained at 200,000 loops

Table 4. Results Summary of Large Size Example (10 Runs)

43 nodes, total number of possible solutions = 168,000
(no. of states in 8 stages=1, 4, 6, 5, 7, 4, 5, 10, 1)

Parameters used population size =50, no. of iterations =4,000

Number of possible solutions

Average number. of solutions 16

Average computing times 191 seconds

4.4 Summary of the Examples

Data set for the small size example has been taken from the literature for com-
parison with GA’s results. However, the MSE and LSE have been randomly ex-
tended from the data set of the SSE by approximately 10 times. That is to say
1,440 possible solutions for SSE, 16,800 for MSE, and 168,000 for LSE. The Table
5 shows the comparison among the results from the three levels of example size.

In case of SSE, as shown in Table 5, when the total number of solutions
tested reached around 2.7 times bigger than the number of possible ones, the
COMSOAL generated 19 of quasi-optimal solutions in 4 seconds.

For this specific example, Pentium IV PC was used to compare with the re-
sults of GA’s which were generated using same type of PC.

In MSE, when the ratio between total number of solutions tested to number
of possible solutions was 1.5 times, the algorithm generated 11 solutions in 20
seconds. In LSE, when the ratio was 1.2 times, the algorithm generated 16 solu-.
tions in 191 seconds. Based on these ratios and the last row of the Table 5. we can
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easily deduce that the algorithm tends to improve its performance in terms of
computing speed when the bigger sample size is applied.

Table 5. Results Comparison Among Three Different Example Size

| second)

Small Size Example Medium Size Example Large Size Example
. 7 Stages 7 Stages 8 Stages
S}Tj;?:g:f possible 24 nodes 33 nodes 43 nodes
1,440 solutions 16,800 solutions 168,000 solutions
Average computing 4 secqnds 20 se(?onds 191 se;conds
times (Pentium IV (Pentium 11 930 MHz| (Pentium 111 930 MHz
128 MB RAM) 256 MB RAM) 256 MB RAM)
Total number
of solutions tested 4,000 25,000 200,000
Average number
of quasi-optimal 19 11 16
solutions obtained
Performance (number
of possible solutions/ | 1440/4=360 16,800/20=840 168,000/191=880

L

|

These results could not be directly compared with the other meta heuristics
such as GA and Simulated Annealing because the data sets used in these exam-
ples have been created randomly. However, based on the ratio of the number of
possible solutions to the computing times as shown in the last row of the Table 5,
it is derived that the algorithm could generate more than 800 quasi-optimal solu-
tions per second. Based on the third and fourth rows of the Table 5, we can easily
forecast around 5 hours computing times when the total number of solutions
tested becomes 20,000,000 which is large enough to be realistic problem sizes and
1s 100 times bigger than L.SE example size.

Therefore, if we consider that process routing is usually done by non-real
time base, it is fairly fast enough to satisfy shop floor’s requirement.

5. CONCLUSIONS

In this study, a simple but an efficient COMSOAL algorithm was adopted to ob-
tain diverse optimum process routings with conflicting two objectives; i.e., mini-
mizing production cost and maximizing production quality. The COMSOAL which
seeks a set of diverse non-dominated solutions has been proposed to solve the PR
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problem. The COMSOAL, which does not need any sensitive parameter settings
and always guarantees feasible solutions, is relatively simple yet powerful solu-
tion approach to be applied in PR.

‘The three different sizes of numerical examples show that the proposed sys-
tem could generate good amounts of and various feasible solutions, which are
quasi-optimal or optimal, in a short time. The experimental results also show that
the performance in terms of average run time could be improved when the bigger
sized example is applied.
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