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ABSTRACT

This paper considers a variation of the customer order scheduling problem, and the variation is the
case where the machine—job assignment is fixed. We examine the parallel machine environment, and
the objective is to minimize the sum of the completion times of the batches. While a machine can
process only one job at a time, different machines can simultaneously process different jobs in a
batch. The recognition version of this problem is known to be NP—complete in the strong sense even
if there exist only two parallel machines.

When there are an arbitrary number of parallel machines, we establish three lower bounds and de—
velop a dynamic programming (DP) algorithm which runs in exponential time on the number of
batches. We present two simple but intuitive heuristics, SB and GR, and find some special cases
where SB and GR generate an optimal schedule. We also find worst case upper bounds on the rela—
tive error. For the case of the two parallel machines, we show that GR generates an optimal schedule
when processing times of all batches are equal. Finally, the heuristics and the lower bounds are em~
pirically evaluated.

Keywords: Scheduling, Batch Scheduling, Customer Order Scheduling, Dynamic Programming, Heu—
ristics

This work was supported by New Professor Research Fund of 2004 from University of
Incheon. The grant was awarded to Dr. Jaechwan Yang during his service at University
of Incheon.

Corresponding author, Email: jyang@uos.ac.kr

*** Email: rho@incheon.ac.kr

ok

19



20 YANG AND RHO

1. INTRODUCTION

In the typical customer order scheduling problem, jobs are dispatched in the
batches and the composition of the jobs in the batch is prespecified. There exist no
setup times between different jobs or different batches, and the objective is asso-
ciated with the completion time of batches instead of the completion time of each
job where the completion time of the batch is the latest completion time of any job
in the batch. While a machine can process only one job at a time, multiple ma-
chines can simultaneously process jobs in the batch. This paper considers a varia-
tion of this customer order scheduling problem, and the variation is the case
where the machine-job assignment is fixed. Hence, jobs are processed by pre-
assigned machines. This is common in situations where machines are capable of
doing a limited set of tasks. For this paper, we examine the parallel machine en-
vironment with two machines and an arbitrary number of machines.

This restricted version of customer order scheduling problem is introduced by
Roemer and Ahmadi [14] and Ahmadi et al. [1] although their objective is to
minimize the weighted sum of the batch completion times. Their research is moti-
vated by a manufacturer who produces three types of semi-finished lenses. Each
customer order consists of different quantities of the three types of lenses, and a
different type of lenses must be processed by a different machine. The customer
order can not be shipped to the customer unless the entire order is completed.

This can be extended to a more general manufacturing example. Consider a
manufacturing facility which produces different types of products. A customer can
request a variety of products in an order. After the entire order is produced, the
products are shipped to the customer. Each order is a batch and a product is a job.
The composition of the batch is specified by the order. Also, different products re-
quire different processing and are therefore processed by different machines.

The customer order scheduling problem is different from most of other batch
scheduling problems because the objective is associated with the completion time
of the batches instead of the completion time of each job and there exist no setup
times between different jobs or different batches. For a comprehensive survey of
general batch scheduling problems, see Jordan [10]. Also, reviews of batching and
lot-sizing decision problems are given by Potts and Van Wassenhove [13] and
Webster and Baker [16].

Julien and Magazine [11] is probably the first to consider the problem where
the objective is associated with the completion time of batches. They study a sin-
gle machine problem where the objective is to minimize the total completion time
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of the batches. A job-dependent setup time is incurred between two different
types of jobs. They develop a polynomial time DP algorithm for the problem when
there are two types of jobs and when the batch processing order is fixed. Coffman
et al. [5] examine a similar problem where the batch processing order is not fixed.

1/2

They develop an O(n''?) procedure. Baker [2] considers a problem similar to

Coffman et al. [5]. However, for one type of job, those jobs processed during the
same production run (setup) are not available until the completion of the produc-
tion run. This restriction is called baich availability (see Santos and Magazine
[15]). Gupta et al. [9] consider the single machine problem where each order must
have one job from each of several job classes. Also, there is a setup time whenever
the job class changes. Gerodimos et al. [7] study single machine problems where
each batch has one common job and one distinct job. Ding [6], Liao [12], and Yoon
[20] also examine similar problems. '

In the batch scheduling problems that we discuss, there exist no setup times
between different jobs or different batches. Blocher and Chhajed [3] examine the
customer order scheduling problem, minimizing the sum of batch completion
times in the parallel machine environment with no variation. They show that the
recognition version of the problem is NP-complete in the strong sense when there
exist ‘at least three parallel machines and the same version is at least NP-
complete in the ordinary sense when there exist two parallel machines. Also, they
develop several heuristic methods and two lower bounds. Yang and Posner [17]
consider the same problem with two parallel machines, and develop three simple
heuristics and find the tight worst case bounds on relative errors of 2, 9/7, and 6/5,
respectively. Yang [18] considers a variation of customer order scheduling prob-
lem where the batch sequence is fixed. He considers the two parallel machine case
establishes that the recognition version of the problem is NP-complete in the or-
dinary sense, and develops a DP algorithm which runs in pseudo-polynomial time
on the number of batches. Yang [19] establishes the complexity of different cus-
tomer order scheduling problems and summarizes the complexity results. He
summarizes the complexity of 10 different cases (or variations) of customer order
scheduling problems and establishes the complexity of six different cases.

When the machine-job assignment is fixed, Roemer and Ahmadi [14] show
that the recognition version of the problem is NP-complete in the strong sense for
the case where there exist only two parallel machines with the objective of mini-
mizing the sum of batch completion times. An easier complexity proof is pre-
sented in Yang [19]. Ahmadi et al. [1] develop three lower bounds and several
heuristics for the problem with the objective of minimizing the sum of weighted
batch completion times.



22 YANG AND RHO

We first introduce notation. Next, we review some preliminary results includ-
ing complexity of the problem. For the problem with an arbitrary number of par-
allel machines, three lower bounds are established and a DP algorithm is devel-
oped. Since the recognition version of the problem is NP-complete in the strong
sense even if there exist only two parallel machines, two simple but intuitive heu-
ristics, SB and GR are developed. We find worst case upper bounds on the relative
error and establish several special cases. For the case of two parallel machines,
we show that heuristic GR finds an optimal schedule when all batches have the
equal processing time. Finally, we present the result of a computational study.

2. NOTATION

The decision variables in our models are

o, = schedule of all jobs on machine % for ke M

o =schedule of all jobs =(oy,0,,:-,0,).

Other notation that is used in this work include

n = number of jobs

N = set of jobs ={1, 2, ---, n}

b = number of batches

B = get of batches ={1, 2, ---, b}

n, = number of jobs in batch i for ie B

M = set of machines = {1,2,---, m}

B, =set of jobs in batch i for ie B = {Z?‘:l1 n; +1, Z;ﬁ n,+2,-, §=1 n;}
B! = set of jobs assigned to machine & for ke M inbatch ic B

m = number of machines

D; = processing time of job j for je N

P =X, p P; = total processing time of batch i B

P’ =Z ;= total processing time of jobs assigned to machine k for ke M

in batch 7€ B
C.(c,) = completion time of batch i on machine k for ie B and ke M
C,(c) = completion time of batch i in schedule o for ie B =max,_,, C/(o,)

z* = value of optimal schedule.
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We represent C,(0) as C, when there is no ambiguity. The standard classi-
fication scheme for scheduling problems (Graham et al. [8]) is o, |, | @;, Where
o, describes the machine structure, «, gives the job characteristics or restric-
tive requirements, and ¢, defines the objective function to be minimized. We
extend this scheme to provide for batch completion times by using CB,. in the o,
field. This notation is used to eliminate the confusion between our problem and
the classical scheduling problem. For instance, the problem of minimizing the

sum of batch completion times on arbitrary number of parallel machines is writ-
ten as P||2XCy . A number after P indicates a fixed number of machines

rather than an arbitrary number, m.

3. LOWER BOUNDS

In this section, we provide two lower bounds for the optimal solution value. As-
sume that the batches are indexed so that P, <P, <---<P,.

Remark 1. For problem P | |ZCh .

bi_}_ﬁ——l)P_Z_!__”_’_iSz*‘ (1)
m m m
Observe that the left side of the inequality (1) is the optimal solution value to

the Linear Programming (LP) relaxation of problem P||XC, where a job can
be split into pieces of any size and processed, simultaneously if desired, on multi-
ple machines without considering machine-job assignment.

We call this lower bound L1 and the solution value 2™, respectively. Blocher
and Chhajed [3] show that L1 is a lower bound for P||XCjy . Hence, L1 is a

lower bound for P||XC, with a fixed machine-job assignment.

Next, we consider another lower bound L2. For each machine, lower bound
L2 reindexes batches in increasing order of processing times. Then, it creates a
new set of batches by putting jobs with the same index into one batch. We for-
mally describe lower bound L2.
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Lower Bound L2.
0. Reindex the batches so that P. <P,

2y for 1=1,2,---,b-1.
If Bf #4 for ie B and keM,thenset B!=B!. Otherwise, set Bt =¢.
Set IA’ik = total processing time of jobs in Bf for ieB and ke M.
1. Reindex Blk so that for each ke M, If’ik < ﬁ'i'il for i=1,2,---,b-1.
2. Create a new set of batches B, such that B, =B' UB?U---UB" for icB.
3. Schedule batches Bi for ie B in index order.

4. Output total completion time.

Steps 0 and 1 require O(blogh+mb) time. In Step 2, reindexing Bf s re-
quires O(mblogb). Since all other operations require O(mb+n), the time re-

quirement of L2 1s O(mblogb +n).

The next remark establishes that z? is a lower bound for the problem.

Theorem 1. For P||XCy with a fixed machine-job assignment, 2" is a lower

bound of an optimal solution value.

Proof. Let o* and o’® be an optimal schedule and the schedule created by L2,
respectively. Reindex batches so that schedule o'? is completed in index order.
Note that for each ie B, C/(o*) =max,_,{C(0,)}. Let C[i](oy’:) be completion
time of ith completed batchin o* for i B and ke M. Note that in Step 2 of
lower bound L2, Bf is reindexed so that for each ke M, 13ik < I:’ifl for =1,
2,--,b-1. Hence, Cy(c;)2 C,(0}*) = PP+ PF 4.+ P where P*<PF<..<Pt

for icB and ke M. Therefore,

b b b b
z* = Y Cy(6%) =Y max{C (o)} 2 > max{C;(c{")}=> C,(c™*) =2".
-1 i1 keM i1 keM i=1

Finally, we consider the third lower bound L3. Let ¢** and o™ be sched-
ules generated by L2 and L3, respectively. Also, let C; (o-kLz) and Cp (o-,em) be
the completion times of the ith completed batch for schedules ¢*? and o™*,
respectively. Suppose that the batches are indexed so that P, <P, <.--< B,. Then,
the completion time of the ith completed batch for L3 is max{(P, + P, +---+
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Pi)/m,C[i](O'L2 )}. In other words, 1.3 takes the maximum of the completion times
of ith completed batch from L1 and L2.
Note that L3 dominates L1 and L2. We now formally describe lower bound L3.

Lower Bound L3.
0. Reindex the batches so that P. <P,

i+1

for i=1,2,-,b-1.
Set C; (6"*) = completion time of the i th completed batch from L2 for
i=1,2,---,b.

1. Set Cy(c™®) =max{(P, + P, +--+P)/m,Cyy(c"*)} for i=1,2,--,b.

2. Output total completion time.

Recall that time requirement of L2 is O(mblogb+n) . Step 0 requires
O(blogb) time. Step 1 requires O(mblogb+n), and Step 2 requires O(b) time.

Therefore, time requirement of L3 is O(mblogb +n).

The next theorem establishes that 2“® is a lower bound for the problem.

Theorem 2. For P||XC, with a fixed machine-job assignment, z"° is a lower

bound of an optimal solution value.

Proof. Let o*, ¢'*, and ¢®* be an optimal schedule, a schedule created by
L2, and a schedule created by L3, respectively. For any schedule o, let C; (o)

be the completion time of ith completed batch in o for i< B. Also, suppose
that the batches are indexed so that P, <P, <---<P,.

From the proof of Theorem 1, C(c*)> Cy(c;?) for all ie B. Also, Cj(c*) 2
(P+P,+-+P)/m . Since C[i](o-L?’) = max{(P, + P, +~'+Pi)/m,C[i](0'L2)} for all
ieB, Cylc®)2 Cy(oy’) for all ieB. Therefore, z*=3  C (6% > zieBC[i]

(O_L3) - ZL3 o

4. PRELIMINARY RESULTS

In this section, we review some preliminary results for our problem.
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4.1 General Results
We begin with the following lemma.

Lemma 1. (Yang [19]) For scheduling problems with regular measures, there ex-
ists an optimal schedule without inserted idle time.

We say that batch ie B is separated if on some machine ke M, jobs in
batch i are not processed consecutively.

Lemma 2. (Yang [19]) For scheduling problems with regular measures, there ex-
ists an optimal schedule where no batch is separated.

As a result of Lemma 2, we assume batches are not separated in an optimal
schedule. We now present another property of batch scheduling problems.

Lemma 3. (Blocher and Chhajed [3]) For batch scheduling problems with a regu-
lar measure, each machine processes the batches which are processed on multiple
machines in the same order.

4.2 Complexity

Since each job is pre-assigned to a machine, we only need to determine the se-
quence of jobs on each machine. Recall that Lemma 3 implies that we only con-
sider schedules where batches that are processed by both machines are processed
in the same order. Consequently, to obtain an optimal schedule, we only need to
determine an optimal batch sequence. The following result is due to Roemer and
Ahmadi [14]. An easier proof is presented in Yang [19].

Theorem 3. The recognition version of P| |ZCB,. with a fixed machine-job as-

signment is NP-complete in the strong sense.

5. DP ALGORITHM

Now, we present a DP algorithm for P| IZCB,_ with fixed machine-job assign-
ment. Since there are b batches to sequence, enumeration requires O(b!) time

to obtain an optimal schedule. From Stirling's approximation formula, b!=+/27zb
(b/2)°(1+©(1/b)) . We present a DP algorithm which finds an optimal schedule
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for P| |2Cy with fixed machine-job assignment in O(mb2") time. Recall that

P’ is total processing time of batch i on machine k for ie B and ke M.

Let f(V) be minimum total completion time of the batches in set V for
Vc B. Set V is the first | V| batches in a schedule generated by set B. Ob-
serve that given V < B, the completion time of the last batch is the same regard-

less of batch processing order because total processing time on each machine is
fixed. Hence, to obtain an optimal schedule, we only examine |V | different cases

where the different batches in V' complete last overall. As an initial condition,
we let f(¢) =0. Define f(V) recursively as follows:

f(V)= min{f(V \{i})+max{Y P> P},...>. P" }} for [V [>1. @)
eV eV eV eV

Observe that max{} , P;,>  P’...>,  P"} is the completion time of

the last batch. In order to obtain f(B) the minimal total completion time, we

calculate f(V) forall V< B and 1<V |Kb-1. To record the optimal choice at

each iteration, let v(V) represent the last batch in a schedule which corresponds
to f(V). Then,

v(V)=argmin{f(V\{i})+max{ZPf,2Pf,---,ZPﬂ}} for [VI>1. 3)
=V

eV eV eV

We now formally describe a DP procedure that finds an optimal schedule for
Pl ZCBi with a fixed machine-job assignment.

Algorithm Al.

0.Set o*=¢, i=1,and B={1,2, -, b}

1. For all V such that V< B and |V |=i, find (V) and v(V) using (2) and
(3). Break ties arbitrarily in equation (3).

2.If i=b, then go to Step 3.
Otherwise, set i =i+1 and go to Step 1.

3. Use v to calculate the optimal schedule o *.
Output o* and f(B).

The following theorem verifies the optimality of Algorithm Al.
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Theorem 4. Algorithm Al produces an optimal job-machine assignment to

P|1XCp with a fixed machine-job assignment in O(mb2®) time.

Proof. Breaking ties arbitrarily in Step 1 does not change the optimal solution

value because given V c B, the last batch completes at max{y P, P’
—-,ZZEVP["} regardless of batch processing orders. Hence, the choice of v(V)

does not affect the value of f(V°) for VcV°cB and |VOHVI+1.
In Al, consider the determination of f(V) in (2) for any set V< B. For all
V'cV suchthat |V'=V (-1, f(V") is known. Recall that for any V c B, the

completion time of the last batch is the same regardless of batch processing order.
Hence, in Step 1, only |V | different cases are considered. For these |V | dif-

ferent cases, |V | different batches in V complete last. From the definition of
f(V) and f(V") for V'cV and |V'=V|-1, f(V) is the minimal total com-
pletion time for the batches in V. Thus, f(B) is the optimal value. Also, o ¥ is

an optimal schedule because Y. C,(c*) = f(B).

Step 0 requires O(b) time. Step 1 considers (bj different sets of batches for

I
i=1,2,---,b. Also, for each set, i different candidates are compared. Thus, Step

. . (b . .
1 requires O(mz-( _J) time. Step 1 repeats for i=1,2,:--,b. Steps 3, 4, 5, and 6
i

require constant time, and they repeat b times. Step 7 requires constant time.

0o
=) e e o)
RG], oo

2 2

Now,

=p2b1t,
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Therefore, Al finds a solution in O(Zf_lm[i'[l‘)]]) = O(mb2®) time. Because
= i

the number of elementary operations and size of all values are bounded by a ex-
ponential function of the input length, Al runs in exponential time.

We now illustrate the algorithm with an example.

Example. Consider the instance where b=3, n, =2, n,=2, n,=1, p,=p, =1,
ps=1, p,=2, and p,=3. Also, B, ={1}, B’=1{2}, B;={3}, B; ={4}, and
B! ={5}. For an initial condition, f(g)=0 (See Table 1). Since there exist three

batches, three different states are considered at Stage 1. At Stage 2, we also con-

. 3 .
sidered three states because [2j =3. At the final stage, Al produces an optimal

solution value. The optimal schedule is ¢* = ((1,3,5),(2,4)) , and the optimal solu-
tion valueis z*=1+3+5=9,

Table 1. An example for Al
Stage (i) State (V) f(v) v(V) o
{1} 1 1 ((1),(2)
1 {2} 2 2 (3),4)
3 3 3 5), )
{1,2} 4 2 ((1,3),(2,4))
2 {1,3} 5 3 ((1,5),(2))
{2,3} 6 3 ((3,5),(4))
3 1,2,3} 9 3 ((1,3,5),(2,4))
6. AHEURISTIC

In this section, we present a simple heuristic. The heuristic uses the Shortest
Batch rule (SB, when a machine becomes available, an unscheduled job in the
batch with a shortest total processing time is selected for processing) to find the
batch sequence. Even though the heuristic is simple, it is intuitive and has practi-
cal implications.
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6.1 Description

We formally describe the heuristic.

Heuristic SB.

for i=1,2,---,b-1.

1. Schedule all jobs in batches in index order. Assign jobs to machines according

0. Reindex batches so that P, < P,

i+1

to their fixed machine-job assignment. When there exist ties, break them arbi-
trarily.

2. OQutput ZLCi and stop.

In Step 0, reindexing the batches requires O(blogb) time. Since all other

operations require O(n) time, the time requirement of SBis O(blogb+n).

6.2 Special Cases

We examine some special cases where heuristic SB generates an optimal schedule

Theorem 5. If n, =1 for all ie B or b=1, then heuristic SB generate an opti-

mal schedule for problem P IZCBi with fixed machine-job assignment

Proof. If =1, then any rule is optimal because switchirng jobs in the batch does
not change the solution value. If n, =1, then each batch is processed by one ma-

chine. Since machine-job assignment is fixed, scheduling each machine can be
performed separately. Then, the solution value for each machine can be summed
to calculate C; for the entire problem. Since each batch contains only one job, for

each machine, the problem reduces to 1| |2C;. Consequently, heuristic SB gen-

erates an optimal schedule.

The next theorem establishes a special case where processing times on each

machine is semi-ordered such that P’ <P* for i=2,3,---,b; k=12,--,m.

Theorem 6. If P*, <P* for i=2,3,---,b; k=1,2,---,m, then heuristic SB gen-

erates an optimal schedule for P||XCy with a fixed machine-job assignment.

Proof. Let ¢ and o* be a schedule by heuristic SB and an optimal schedule,
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respectively. Notice that P, <P, <---< P, and thus, the batch sequence gener-
ated by SB is (1,2,---,b) . Also, note that SPT rule (shortest processing time job
first) generates an optimal schedule for problem 1||XC;. Since P' < P" for
i=2,3,-,b; k=1,2,-,m, C(o”)=max,, {3 P} forall icB.Let Cylo;)
be the completion time of ith completed batchin o* for ie B and ke M. Then,
Cy(op) 2 Y P/ because P'<Pf<.-<P' and Cy(c* >max,., {Cy(o)} .

Therefore, Cj;(c*)>C;(c™), and we have the result.

The following theorem establishes a special case for the two parallel ma-
chines.

Theorem 7. If P' 2P? for all ie B (or P' <P’ for all ieB), then heuristic
SB generates an optimal schedule for P2 IZCBZ with a fixed machine-job as-

signment.

Proof. Suppose that P' > P? for all ie B. Let ¢” be a schedule by heuristic
SB. Note that SPT rule generates an optimal schedule for problem 1}}XC;.

Hence, this is the minimum possible completion time for ’th scheduled batch on
machine 1 in any schedule. Since C, (c%) = max{C, (o-lH ).C, (o-f )}, heuristic SB

generates an optimal schedule.

The result of Theorem 7 can be extended to the case of an arbitrary number
of parallel machines. However, another rule is optimal for the problem.

Corollary 1. If there exists ke M such that Pik > max,_,{P'} for all ieB,

then shortest processing time order on machine k generates an optimal schedule
for P|| ZCBi with a fixed machine-job assignment.

Proof. Let o” be a schedule by heuristic SB. Since P’ >max,_,{P'}, C,(c")=
z;zlek for all ie B. Note that SPT rule generates an optimal sequence for
problem 1| |XC;. Hence, this is the minimum possible completion time for ith

scheduled batch on machine %k in any schedule. Since C,(c")=max,_, {C,(c] )},
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heuristic SB generates an optimal schedule.

6.3 An Upper Bound on the Relative Error

Let o” be a schedule by heuristic SB and let 2% be solution value of an SB
schedule. We assume that P. <P, for i=1,2,--,b-1. The following theorem
establishes a worst case bound on the relative error for arbitrary number of ma-
chines.

Theorem 8. For P | ZCBi with a fixed machine-job assignment, 258 lz%¥<m.

Proof. Note that 2z < bP, +(b~-1)P,+---+2P, , +P,. The equality holds only
when all batches are processed on one machine. From Remark 1, z*>{bP, +
(b-1P, +---+2P, , + B,}/m . The equality holds only when for each batch, process-
ing time is evenly distributed on machines 1 through m. However, the two ine-

qualities can not occur for the same set of batches. Hence, z%2/z* <m.

7. APOLYNOMIAL TIME PROCEDURE FOR PROBLEM P2|P, =1|2Cy

In this section, we present a greedy type algorithm which finds an optimal sched-

ule for the case where there exist two parallel machines and P, =P for a con-
stant P and all ie B. The problem is formally written as P2|P, =1| 2Cy with

a fixed machine-job assignment.

The algorithm uses a greedy rule to determine a batch sequence. Given set of
batches V = B, a batch with the smallest makespan is scheduled first. Then, this
batch is removed from V. For each remaining batch in V, the algorithm sched-
ules the batch at the end of a current partial schedule and finds a batch which
generates the smallest solution value. Then, this batch is also removed from V
and it is scheduled to the end of the current partial schedule. The algorithm re-
peats until no more batches are left in V. Now, we formally describe the algo-
rithm, which can be applied to the case of an arbitrary number of parallel ma-
chines.
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Algorithm GR.

0.Set F'=0 for i=0,1,2,---,b; k=1,2,--,m.
Set V=B and i=/=1.

1. Set ¢=argmin,  {F} +P F’ +P - F' +P"}.
Set V=V\{.
Set F* =F* +P! for k=1,2,---,m.

2. Set C, =max,_,{F*}.
If i<b,thenset i=i+1, and go to Step 1.
Otherwise, output ZL C; and stop.

Note that GR is also a heuristic for P | IZCBL with a fixed machine-job as-

signment. We evaluate the performance of GR along with SB in the next section.
The following remark finds special cases where algorithm GR generates an
optimal schedule for P||XC, with a fixed machine-job assignment.

Theorem 9. Theorems 5, 6, 7, and 8, and Corollary 1 also hold for algorithm GR.

Proof. The proof is similar to those of Theorems 5, 6, 7, and 8, and Corollary 1.

Let o be a schedule by algorithm GR. We assume that batches are
reindexed according to the selection order in Step 1. The following lemma
establishes a property of a schedule generated by algorithm GR for P2||XCp

with a fixed machine-job assignment.

Lemma 4. For P2]| |ZCB, with a fixed machine-job assignment, Ci(o'H ) >

C, (o) for i=2,3,b.

Proof. Suppose that there exists a batch ie B such that Ci(O‘H )<Ci_1(O'H ).
From Lemma 3, if P' >0 and P?>0, then C,(c”)>C, ,(c"). Hence, P! =0

or P’ =0. Without loss of generality, we assume that P' =0. Then, C,, (o, )>
Ci(O'lH ). However, Step 1 of GR must select batch i first before batch i—-1 be-
cause choosing batch i first generates a smaller solution value, a contradiction.

Therefore, C,(c™)>C, (c”) for i=2,3,---,b.
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As a result of Lemma 4, we assume that the selection order in Step 1 is the

same as the completion order in ¢? which is generated by GR.
Next, we define some additional notation used in this section (see Yang and
Posner [17]). For k,ie B, suppose k is the last batch to complete before i in

schedule o . Let

5.(0) |C.(o)-C, (o) if only one machine processes batch i
AO0) =
! |C;(c,)-C,(0,)| if both machines process batch i.

For each ie B, J,(c) is the absolute difference between completion time of
batch i on machine 1 and machine 2 in o . If batch i is processed on only one
machine, then (o) is the difference between the completion time of batch i

and the completion time of the last batch to complete before i (see Figure 1). If
batch i is the first batch to complete, then we assume C,(0)=0. We use J,(o)

to provide a description of the completion time of batch i.If G < B is the set of

batches that complete no later than batch i, then

%Pt 80)

Ci (o) = 9

Notice that since P, is known for ¢=1,2,---,i, C.(o) only depends on the

size of §,(o).

5 —»] [+ o
¢

Mo ] | oM ¢ | |
M, [ 7] | My g | e |
Time —————p Time ————p
(a) ()

Figure 1. Examples of &, where the last two jobs processed in batch i are j and ¢: (a)
batch i is processed by both machines; (b) batch i is processed only by M,
and g isthe last job to complete in batch k.

The next theorem establishes that GR finds an optimal schedule for
P2| P, =1|XC, with a fixed machine-job assignment.
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Theorem 10. Algorithm GR produces an optimal batch sequence for P2|P. =

1] ZCBi with a fixed machine-job assignment in O(b*) time.

Proof. Since P, =P forall i< B, from (4), the solution value of this problem is

L bﬁ+(b—1)]3+---+l_’+z;5i ~ b(b+1)13+2$=15i

2 4 2 ®

Note that the first term of (5) is fixed regardless of the batch sequence. Hence, an
optimal schedule of the problem produces the minimum value of Zi’:l o, . For no-
tational convenience, let A,=P'-P? for i=1,2,---,b.

We create a new batch scheduling problem with b batches where completion
times of the batches are equal to the J,'s of the original problem fori=1,2,---,b.
Let ISL be processing time of batch i€ B in the new problem. Set ]3; =A, and
P?=0 if A, >0, and set P'=0 and P?=A, if A, <0 forall ieB.

Then, the new problem becomes P2||XC, with a fixed machine-job assignment

where n,=1 for all ie B and either P'=0 or P*=0 for all ie B. From

Theorem 5, heuristic SB finds an optimal schedule for this problem. We use the
completion order of this schedule to generate a batch sequence for the original

problem. Notice that Z;(Si depends only on A, 's. Since we use A,'s from the
original problem to generate the new problem, a solution value in the new prob-

lem must be the same as Z?:léi in the original problem. Hence, we have a

schedule with minimum 21151‘ for the original problem and thus, this schedule
is optimal for the original problem.

Now, we show that the batch sequence achieved by applying heuristic SB to the
new problem is actually the same batch sequence achieved by applying algorithm
GR to the original problem. Suppose that batch ¢ completes first in an optimal
schedule for the new problem. Note that A, =min, _,{A }. Hence, GR also selects

batch i first. The second batch to complete in the optimal schedule for the new
problem is batch argmin, g, {| A, +A, |}, which is also the second choice by GR.

We can repeat this argument for the rest of batches in B. Consequently, GR
finds an optimal batch sequence to P2|P, =1|XC, with a fixed machine-job

assignment.
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Step 1 requires O(b) time.  In Step 1, finding a partial schedule requires
O(zg (b-1)) =0@®*) time. Since all the other operations require O(b) time, the
time requirement of GR is O(b*) . Therefore, GR finds an optimal batch sequence

for P2| P, =1|12Cy with a fixed machine-job assignment in o).

8. COMPUTATIONAL STUDY OF HEURISTICS SB AND GR

We empirically evaluate SB and GR by comparing solution values generated by
heuristics with z"® which is generated by L3. Recall that L3 is the tightest lower
bound among L1, 1.2, and L3 on the optimal solution value. Also, we compare the
performance of z™' and z"?. Even though GR generates an optimal schedule
for P2|F,=1|2Cy with a fixed machine-job assignment, it is a heuristic for

P2||2Cp with a fixed machine-job assignment. As performance indicators of

SB and GR, we use upper bounds on relative errors 258128 and 2R /zM?,
respectively. The computational experiment is performed for the two, three, and
five parallel machine cases. We also observe the impact of different factors such
as b, n;, p; and E(n)on the performances of SB and GR, where E() is the

expectation operator.

For each problem instance, n, ~ DU[L,7] and p, ~ DU[p"®,p"?], where 7,

p™, and p” are parameters and where DU[/,u] represents a discrete ran-

dom variable uniformly distributed between / and u. For a given set of test
problems, b is fixed. It follows that E(n,)=(Q1+n)/2 and E(n)=bE(n)=
b(l+n)/2.

We generate 1,050 test problems under 35 conditions. To test the effects of
varying E(n), we consider three different values of E(n): 16, 100, and 2500. To
determine whether different combinations of b and n, have an impact on the
performance of the heuristics, we consider five different combinations of b and
n, for a given value of E(n). Also, to test the effects of varying the number of
parallel machines, we consider three different cases: two parallel machines, three

parallel machines, and five parallel machines. The impact of varying the number
of machines is considered when E(n)=2500.
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Table 2. Design for the Computational Study

p;~ DU[1,99] DUI[25,75] | DU[40,60]
EMm) 16 100 2500 100 100
m 2 2 2 3 5 2 2
b |n|b|n b n b n b n b n b n

31 1199 1| 4999 1| 4999 1| 199 1] 199
15 4| 49 10) 499 10) 499 10| 499 4] 49 4 49
10| 19 50 99 50 99 50 991 10| 19, 10| 19
3| 2560 7| 250 19| 250 191 250 19| 25 71 25 7
16| 1 |100 2500 1| 2500 2500 1| 100 1| 100 1

0 R DN =
3

—

S

©

©

©

—

[a—y

It 1s also possible that the standard deviation of the p;’s may affect the per-

formance of the heuristics. Consequently, when E(n)=100, we consider three dif-
ferent distributions of p;: p, ~ DU[1,99], p; ~ DU[25,75], and p; ~ DU[40,60].
Their standard deviations are 28.88, 14.43, and 5.77, respectively. For each com-
bination of the different factors, we solve 30 problems. Table 2 presents a sum-
mary of the design for the computational study.

The results for the cases where p; ~ DU[1,99] are presented in Tables 3 and

4. The average relative error is the average ratio of the solution value of a heuris-
tic to 2"®. Since each design point has 30 replications, the average relative error
is calculated over 30 test problems. When b =1, all average relative errors are
equal to 1 because both of the heuristics produce an optimal schedule (Theorems
5 and 9). Also, when n =1, both of the heuristics generate an optimal schedule
and errors are due to the use of z"°® instead of the optimal value (Theorems 5
and 9).

We now summarize the results of our study. First, observe that L.1 and L2 do
not dominate each other in Table 3. For a fixed number of jobs, L1 performs bet-
ter than 1.2 as b increases. Also, it seems that L1 performs better as the number
of jobs increases.

The results in Table 4 indicate that both of the heuristics perform better as
E(n) increases. Note that in some cases, the sum of the number of problems

where 2% <z°% and the number of problems where z°% >z°® is greater than
30. This is due to the fact that both of the algorithms can generate the same solu-
tion value. Heuristic GR consistently performs better than SB except for the case
where E(n)=2500 and b =250, but GR does not dominate SB. For E(n)=2500,
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SB performs slightly better as the number of batches increases, but the reverse is
true for the cases where E(n)=16 and E(n)=100. Also, the best performance of

SB occurs when E(n) =2500.

Table 3. Relative Performance of the Lower Bounds when the Number of Machines is Two

p; ~ DUI1,99] Average lower bound values Number of problems
En) | b n L1 L2 L3 2M 22" 2 <"
1 31 283 402 402 0 30
2 15 455 593 603 2 28
16 4 7 799 906 930 9 21
8 3 873 943 1204 14 16
16 1 2391 1879 2572 26 4
1 199 2273 3106 3106 0 30
4 49 5216 5886 5997 6 24
100 10 19 10153 10277 10763 13 17
25 7 19975 19045 20809 22 8
100 1 82675 50791 84067 30 0
1| 4999 57122 76717 76717 0 30
10 499 267783 280836 290406 13 17
2500 50 99 1186883 1118412 1213671 26 4
250 19 5532894 4903452 5551524 30 0
2500 1| 52362228 27124896 52389868 30 0
Table 4. Performance of the Heuristics when the Number of Machines is Two
p;~ DU[L,99] Average relative error bounds Number of problems
En) b n Heuristic SB | Heuristic GR 2% <% 2% 2 2%
1 31 1.0000 1.0000 30 30
2 15 1.0473 1.0331 24 30
16 4 7 1.0727 1.0481 15 30
8 3 1.1011 1.0681 6 25
16 1 1.0762 1.0762 30 30
1 199 1.0000 1.0000 30 30
4 49 1.0624 1.0337 11 30
100 10 19 1.0775 1.0467 3 27
25 7 . 1.0860 1.0435 5 25
100 1 1.0163 1.0163 30 30
1| 4999 1.0000 1.0000 30 30
10 499 1.0711 1.0385 4 26
2500 50 99 1.0327 1.0338 6 24
250 19 1.0327 1.0338 19 11
2500 1 1.0008 1.0008 30 30
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The results in Table 5 indicate that L1 performs better when the number of
machines is more than two. However, it is still the case that L1 and L2 do not
dominate each other.

Table 5. Relative Performance of the Lower Bounds when the Number of Machines Varies

IZ,(N’;EZ[ISS?)] Average lower bound values Number of problems
m b ’_.L Ll L2 L3 ZLI Z 2L2 le S ZLZ
11 4999 57122 76717 76717 0 30
10 499 267783 280836 290406 13 17
2 50 99 1186883 1118412 1213671 26 4
250 19 5532894 4903452 5551524 30 0
2500 1| 52362228 27124896 52389868 30 0
1| 4999 38447 57745 57745 0 30
10 499 190767 203850 212041 11 19
3 50 99 854338 776280 869644 30 0
250 19 3881820 3267555 3895012 30 0
2500 1| 34057480 1247740 34977832 30 0
1 4999 26474 42262 42262 0 30
10 499 119171 127730 133557 10 20
5 50 99 538635 482388 551230 30 0
250 19 2424896 1903940 2436828 30 0
] 2500 1| 20994628 | 4746149 | 21014076 30 0

Table 6. Performance of the Heuristics when the Number of Machines Varies

%(Nn)Dgz[lg;g(g)] Average relative error bounds Number of problems
m b 7| Heuristic SB | Heuristic GR 2P | P
1] 4999 1.0000 1.0000 30 30
10 499 1.0711 1.0385 4 26
2 50 99 1.0327 1.0338 6 24
250 19 1.0327 1.0338 19 11
2500 1 1.0008 1.0008 30 30
1| 4999 1.0000 1.0000 30 30
10 499 1.1314 1.0706 1 29
3 50 99 1.0848 1.0456 1 29
250 19 1.0528 1.0385 9 21
2500 1 1.0019 1.0019 30 30
1| 4999 1.0000 1.0000 30 30
10 499 1.1543 1.0980 1 29
5 50 99 1.1190 1.0595 0 30
250 19 1.0767 1.0421 0 30
L 2500 1 1.0039 1.0039 30 30
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From Table 6, observe that GR consistently performs better than SB as the
number of machines increases, but SB and GR still do not dominate each other.
Also, it seems that the average relative error of the two heuristics increases as
the number of machines increases. We suspect that this may be due to the use of

z" instead of the optimal value. Note that L1 performs much better than L2
when the number of machines is more than two, and performance of lower bound
L1 (splitting jobs into pieces of any size and processed, simultaneously if desired,
on more than two machines without considering machine-job assignment) may
become worse as the number of machines increases.

Finally, we compare the average relative error of the two heuristics when the
standard deviation (s.d.) of p; changes in Table 7. When =4 or 5=10 in

Table 7, the average relative error bounds for SB and GR increases slightly as the
standard deviation of p; decreases. But, when b=25 or b=100 in Table 7,

the average relative error for SB and GR decreases slightly as the standard devia-

tion of p; decreases. In Table 8, we compare the number of test problems

where 2%8 <z and 2% > z9%,

Table 7. Sensitivity of the Error Bounds to Processing Time Variance when the Number of
Machines is Two

p, ~ DU[1,99] p, ~ DU[25,75] p, ~ DU[40,60]
E(n) =100
(s.d. = 28.28) (s.d. = 14.43) (s.d. = 5.77)
b n SB GR SB GR SB GR
1 | 199 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
49 1.0624 1.0337 1.0601 1.0351 1.0584 1.0361
10 19 1.0775 1.0467 1.0750 1.0422 1.7710 1.0438
25 1.0860 1.0435 1.0774 1.0423 1.0766 1.0426
100 1 1.0163 1.0163 1.0129 1.0129 1.0106 1.0106

Table 8. Sensitivity of the Number of Problems when SB and GR are Best to Processing

Time Variance when the Number of Machines is Two

p, ~ DU1,99] p, ~ DU[25,75] p, ~ DU[40,60]
E(n) =100
(s.d. = 28.28) (s.d. = 14.43) (s.d. = 5.77)

b ﬁ zSB S zGR ZSB > ZGR ZSB < ZGR ZSB > ZGR ZSB < ZGR ZSB > ZGR
1 | 199 30 30 30 30 30 30
49 11 30 9 30 12 30
10 19 3 27 3 27 3 28
25 7 5 25 4 26 6 24
100 1 30 30 30 30 30 30
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Observe the number of test problems with 2% <z%® increases slightly as

the standard deviation of p; decreases, except when b=25. The results in Ta-

bles 7 and 8 suggest that in general, GR performs better than SB regardless of
the change in the standard deviation of p,.

We may suggest that managers in practice use the both heuristics and apply
the best result for the real world problems since SB and GR do not dominate each
other and their computational requirement is minimal.

9. DISCUSSION AND FURTHER RESEARCH

We have explored problem P | |ZCB,. with fixed machine-job assignment. This

problem is simpler than many batch scheduling problems but has several practi-
cal implications. Producing different types of products on a different machine is a
practical assumption, which is true in many real world manufacturing facilities.
Also, due to logistics cost, products are shipped out to customer as a whole order
not as an individual product. Hence, the objective concerned with batch comple-
tion times instead of job completion times is also a suitable assumption. Even
though heuristics SB and GR are simple, they are intuitive and provide practical
insight to managers. Also, for small sets of orders and machines, the DP algo-
rithm can be applied to obtain an optimal schedule.

In this work, the worst case bound on the relative error of the heuristics SB
and GE are not tight. Hence, future research can find their tight worst case
bounds. Also, the both heuristics can be analyzed further to provide more infor-
mation on its performance.

The results of this paper can be used to develop solution procedures for more
complex and realistic applications. There are several extensions of our research
that might be considered. One extension is to study our problem with different
machine speeds such as proportional and unrelated parallel machines. Also, dif-
ferent shop environments can be considered, such as job shop, open shop, and flow
shop. These different shop environments have a variety of realistic applications.
Further, our problem can be analyzed with different objectives such as ZwiCBi ,

Ly ZwiUBL ,and Y w,T, . Different real world applications require different

objectives. For example, for processing orders at an internet shopping mall,

> wTy is a more realistic objective.
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