A Study on the Characteristics of the Adiabatically Expanded Polyolefin Structured Foams

단열 발포 폴리올레핀계 구조체의 특성에 관한 연구

  • Hwang Jun-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim Woo-nyon (Department of Chemical and Biological Engineering, Korea University) ;
  • Jun Jae-Ho (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Kwak Soon-Jong (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Hwang Seung-Sang (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Hong Soon-Man (Polymer Hybrids Research Center, Korea Institute of Science and Technology)
  • 황준호 (고려대학교 화공생명공학과) ;
  • 김우년 (고려대학교 화공생명공학과) ;
  • 전재호 (한국과학기술연구원 고분자하이브리드센터) ;
  • 곽순종 (한국과학기술연구원 고분자하이브리드센터) ;
  • 황승상 (한국과학기술연구원 고분자하이브리드센터) ;
  • 흥순만 (한국과학기술연구원 고분자하이브리드센터)
  • Published : 2005.12.01

Abstract

This study investigates the isothermal crystallization behaviors of polypropylene-polyethylene-(1-butene) terpolymer and the adiabatically expanded polyolefin structured foams. For this purpose, butane gas was used as a physical blowing agent. Avrami equation has been used to interpret theoretically the experimental results obtained by either DSC or polarized optical microscope. It is believed that elongation induced crystallization occurring during the adiabatic expansion process has resulted in an increase in crystallization rate, eventually leading to a faster growth rate of spherulites and an increase in the nucleation density. An analysis of the foam by SEM images showed that the structure of foam is uniform (below diameter 30 $\mu$m closed cell) In addition, the thermal conductivity and the compressive strength of the polyolefin structured foams was measured. The thermal conductivity of foamed resin with excellent insulation characteristics is reduced compared with unfoamed resin. The compressive strength is decreased with increase in the expansion ratio.

폴리올레핀계 공중합체 수지인 polypropylene-polyethylene-(1-butene) 미발포 수지에 부탄 가스를 물리적 발포제로 이용하여 단열 팽창시킨 발포체의 등온 결정화 거동을 DSC(differential scanning calorimeter)와 편광 현미경을 이용하여 고찰하였으며, 얻어진 결과는 Avrami 식을 이용하여 해석하였다. 발포체의 결정화 반감 시간이 미발포체의 결정화 반감 시간보다 짧고 핵 생성 속도 증가에 따른 nucleation density증가 및 구정 성장 속도가 더 빠름이 발견되었는데, 이는 가공 공정 중의 분자량 감소보다는 단열 팽창 과정에서 진행되는 연신 배향 결정화에 의해 결정화 속도가 증가하였기 때문인 것으로 사료된다. 또한, 단열 구조 발포체는 직경 30 $\mu$m 이하의 균일한 closed cell 형태를 나타내고 있음을 SEM 을 이용하여 관찰하였고, 발포체의 물성은 미발포체에 비해 단열성이 크기 때문에 열전도도가 감소하였고 압축강도는 발포비가 증가할수록 감소하는 것을 알 수 있었다.

Keywords

References

  1. F. Liu, G. Liu, and C. B. Park, Adv. Polym. Tech., 22, 280 (2003)
  2. C. B. Park and L. K. Cheung, Polym. Eng. Sci., 37, 1 (1997)
  3. H. E. Naguib, C. B. Park, and N. Reichelt, J. Appl. Polym. Sci., 91, 2661 (2004)
  4. D. Klemper and K. C. Frisch, Handbook of Polymeric Foams and Foam Technology, Hanser, New York, 1991
  5. J. S. Colton, Mater. Manuf. Process, 4, 253 (1989)
  6. K. H. Seo and J. C. Lim, Polymer(Korea), 25, 701 (2001)
  7. H. Dominhaus, Plastics for Engineers, Hanser, New York, 1993
  8. J. D. Hoffman and J. I. Lauritzen Jr., J. Res. Natl. Bur. Std. (U.S.), 65A, 297 (1961)
  9. J. B. Choi, M. J. Chung, and J. S. Yoon, Ind. Eng. Chem. Res., 44, 2776 (2005)
  10. B. Wunderlich, Macromolecular Physics, Crystal Nucleation, Growth, Annealing, Academic Press, New York, 1976
  11. L. H. Sperling, Introduction to Physical Polymer Science, John Wiley & Sons Inc., New York, 1986
  12. C. N. Velisaris and J. C. Seferis, Polym. Eng. Sci., 26, 1574 (1986)
  13. L. C. Lopez and G. L. Wilkes, Polymer, 29, 106 (1988)
  14. S. H. Jung, Ph. D. Dissertation, Korea Advanced Institute of Science and Technology(KAIST), Seoul, Korea (1998)
  15. T. Kowalewski and A. Galeski, J. Appl. Polym. Sci., 32, 2919 (1986)
  16. S. M. Hong, B. C. Kim, K. U. Kim, and I. J. Chung, Polym. J., 24, 727 (1992) https://doi.org/10.1295/polymj.24.727
  17. J. I. Laurizen and J. D. Hoffman, J. Res. Natl, Bur. Stand(A), 64, 73 (1960)
  18. H. D. Keith and F. J. Padden Jr., J. Appl. Phys., 35, 1270 (1964)
  19. S. Chew, J. R. Griffiths, and Z. H. Stanchurski, Polymer, 30, 874 (1989)
  20. Y. Deslandes, M. Dat, N. F. Sabir, and T. Suprunchuk, Polym. Compos., 10, 360 (1989)
  21. S. Kumar, D. P. Anderson, and W. W. Adams, Polymer, 27, 329 (1986) https://doi.org/10.1016/0032-3861(86)90061-3
  22. F. Rybnikar, J. Appl. Polym. Sci., 27, 1479 (1982)
  23. R. Thomann, C. Wang, J. Kressler, and R. Mulhaupt, Macromolecules, 29, 8425 (1996)
  24. D. F. Baldwin, C. B. Park, and N. P. Suh, Polym. Eng. Sci., 36, 1437 (1996)
  25. J. S. Colton and N. P. Suh, Polym. Eng. Sci., 27, 485 (1987)
  26. B. A. Rodeheaver and J. S. Colton, Polym. Eng. Sci., 41, 485 (2001) https://doi.org/10.1002/pen.10703
  27. Sumarno, Y. Sato, S. Takishima, and H. Masuoka, J. Appl. Polym. Sci., 77, 2383 (2000)
  28. J. Martini, F. Waldman, and N. P. Suh, In Proceedings of the SPE ANTEC '82, 28, 674, (1982)
  29. S. K. Goel and E. C. Bechman, Polym. Eng. Sci., 34, 1137 (1994)
  30. K. A. Arora, A. J. Lesser, and T. J. McCarthy, Macromolecules, 31, 4614 (1998)
  31. M. A. Rodriguez-Perez, O. Alonso, J. Souto, and J. A. de Saja, Polym. Test., 16, 287 (1997)
  32. O. A. Almanza, M. A. Rodriguez-Perez, and J. A. de Saja, J. Polym. Sci.; Part B: Polym. Phys., 38, 993 (2000)