액정성 전방향족 폴리에스테르

Liquid Crystalline Aromatic Polyesters

  • 권영완 (고려대학교 화학과 전자광감응분자센터) ;
  • 최동훈 (고려대학교 화학과 전자광감응분자센터) ;
  • 진정일 (고려대학교 화학과 전자광감응분자센터)
  • 발행 : 2005.12.01

초록

선형 방향족 폴리에스테르는 열방성 액정중합체의 대표적 예로 지금까지 그 구조-액정성 관계가 많이 연구되었다. 본 논문에서는 지난 4반세기 동안 본 연구진이 행한 연구결과를 중심으로 액정성 전방향족 폴리에스테르의 열적특성 및 액정성을 그 화학구조와 관련지어 논의한다. 특히 미세화학구조의 변경이 어떻게 액정성에 영향을 주는가에 논의의 초점을 두었다. 특히 선형구조에서 크게 벗어나는 복합형 액정성 폴리에스테르 및 액정성 고차가지구조 폴리에스테르도 조감하였다. 고차가지구조 고분자는 덴드리머와 관련하여 많은 관심을 끌고 있다. 이 고분자들의 합성법도 말미에 소개하고 있다.

Linear aromatic polyesters are representative examples of thermotropic liquid crystalline polymers (TLCPs), which have been the subject of many researches. This article reviews the structure-LC properties relationship in wholly aromatic CLCPs mostly based on the results obtained for the past quarter of a century. Especially, this review deals with the structural details of aromatic polyester TLCPs that influence the liquid crystalline and thermal properties. In the last part of this article the liquid crystalline properties of combined type and hyperbranched polyester also are discussed. Introduction to various synthetic methods are included in the last section.

키워드

참고문헌

  1. H. -J. Park, K. -M. Kim, and Y. -G. Han, Polymer(Korea), 22, 731 (1998)
  2. T. -W. Ahn, M. -H. Oh, and S. -W. Lee, Polymer(Korea), 19, 359 (1995)
  3. K. -C. Ryuk, J. -B. Kim, and S. W. Choi, Polymer(Korea), 16, 312 (1992)
  4. J. -K. Choi, Polymer(Korea), 14, 668 (1990)
  5. Y. -I. Mok, H. C. Choi, and S. -H. Lee, Polymer(Korea), 6, 384 (1982)
  6. S. -H. Lee and M. -H. Suh, Korea Polym. J., 1, 51 (1993)
  7. C. K. Ober, J. -I. Jin, Q. Zhou, and R. W. Lenz, Adv. Polym. Sci., 59, 104 (1984)
  8. J. R. Schaefgen, US Patent 4,118,372 (1978)
  9. J.J. Kleinschuster, T. C. Flitcher, and J. R. Schaefgen, Belg. Pat. 828,935 (1975)
  10. W. J. Jackson and H. F. Huhfuss, US Patent 4,140,846 (1979)
  11. W. J. Jackson, Brit. Polym. J., 12,154 (1980) https://doi.org/10.1002/pi.4980120405
  12. J. -Y. Song, Y. -K. Yun, and J. -I. Jin, J. Polym. Sci.; Part A: Polym. Chem., 37,881 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<881::AID-POLA4>3.0.CO;2-D
  13. W. R. Krigbaum, H. Hakemi, and R. Kotek, Macromolecules, 18, 965 (1985) https://doi.org/10.1021/ma00147a027
  14. J. -I. Jin, E. -J. Choi, and B. -W. Jo, Macromolecules, 20, 934 (1987) https://doi.org/10.1021/ma00171a006
  15. J. -I. Jin and C. -S. Kang, Prog. Polym. Sci., 22, 937 (2000) https://doi.org/10.1016/S0079-6700(97)00013-0
  16. W. J. Jackson, Contemp. Top. Polym. Sci., 5,117 (1984)
  17. C. R. Payet, US Patent 4,159,365 (1979)
  18. J. Majnusz, J. M. Catala, and R. W. Lenz, Eur. Polym. J., 19, 1043 (1983) https://doi.org/10.1016/0014-3057(83)90070-8
  19. H. R. Dicke and R. W. Lenz, J. Polym. Sci., Polym. Chem. Ed., 21, 2581,(1983) https://doi.org/10.1002/pol.1983.170210838
  20. G. V. Laivins and D. G. Gray, Macromolecules, 18, 1783 (1985)
  21. M. Ballauff, Macromolecules, 19, 1366 (1986) https://doi.org/10.1021/ma00159a015
  22. M. Ballauff, Macromol. Chem. Rapid Commun., 7, 407 (1986) https://doi.org/10.1002/marc.1986.030070615
  23. B. R. Harkness and J. Watanabe, Macromolecules, 24, 6759 (1991) https://doi.org/10.1021/ma00025a031
  24. J. Watanabe, B. R. Harkness, M. Sone, and H. Ichimura, Macromolecules, 27,507 (1994) https://doi.org/10.1021/ma00080a026
  25. J. M. Rodriguez-Parada, R. Duran, and G., Wegner, Macromolecules, 22, 2507 (1988) https://doi.org/10.1021/ma00195a087
  26. C. -S. Kang, C. Heldmann, H. -J. Winkelhahn, M. Schulze, D. Neher, G. Wegner, R. Wortmann, C. Glania, and P. Kramer, Macromolecules, 27, 6156 (1994) https://doi.org/10.1021/ma00099a034
  27. S. D. Damman, F. P. M. Mercx, and C. M. Kootwijkdamman, Polymer, 34, 1891 (1993) https://doi.org/10.1016/0032-3861(93)90431-9
  28. A. Roggero, U. Pedrett, F. P. La Mantia, V. Citta, and A. Lezzi, US Patent 5,334,695 (1994)
  29. R. Zentel, Comprehensive Polymer Science, Pergamon Press, Oxford, 723 (1989)
  30. P. K. Bhowmik and H. Han, Macromolecules, 26, 5287 (1993) https://doi.org/10.1021/ma00072a003
  31. W. Heitz and H. W. Schmidt, Makromol. Chem. Macromol. Symp., 38, 149 (1990)
  32. T. -G. Choi, Y. -K. Yun, and J. -I. Jin, Polym. -Plast. Technol. Eng., 36, 135 (1997) https://doi.org/10.1080/03602559.1997.10399443
  33. S.-J. Chung, S. -M. Huh, and J.-I. Jin, J. Polym. Sci.; Part A: Polym. Chem., 34, 1105 (1996) https://doi.org/10.1002/(SICI)1099-0518(19960430)34:6<1105::AID-POLA20>3.0.CO;2-A
  34. J. -I. Jin, C. -S. Kang, I. -H. Lee, and Y. -K. Yun, Macromolecules, 27, 2664 (1994) https://doi.org/10.1021/ma00088a003
  35. J. -I. Jin, C. -S, Kang, and I. -H. Lee, Polym. Preprints(AU), 33, 233 (1992) https://doi.org/10.1016/0032-3861(92)90977-5
  36. J. -I. Jin, Mol. Cryst. Liq. Cryst., 254, 197 (1994) https://doi.org/10.1080/10587259408036076
  37. R. W. Lenz, J. -I. Jin, and K. A. Feichinger, Polymer, 24, 327 (1983) https://doi.org/10.1016/0032-3861(83)90272-0
  38. J. -I. Jin, J. -H. Chang, K. Hatada, K. Ute, and H. Hotta, Polymer, 33, 1374 (1992) https://doi.org/10.1016/0032-3861(92)90109-A
  39. A. M. Kotliar, J. Polym. Sci. Macromol. Revs., 16, 367 (1981) https://doi.org/10.1002/pol.1981.230160106
  40. J. -I. Jin, C. -S. Kang, I. -H. Lee, and Y. -K. Yun, Macromolecules, 27, 2664 (1994) https://doi.org/10.1021/ma00088a003
  41. Plastic World, 42, 71 (1984)
  42. J. -I. Jin and J. -H. Chang, in 'Polymeric Materials Encyclopedia', J. C. Salamone, Editor, CRC Press, Vol. 5, p. 3645 (1996)
  43. J.-I. Jin, S. Antoun, C. K. Ober, and R. W. Lenz, Br. Polym. J., 12, 132 (1980) https://doi.org/10.1002/pi.4980120403
  44. J.-I. Jin and S.-M. Huh, Macromol. Symp., 96, 125 (1995)
  45. W. R. Krigbaum, R. Kotek, T. Ishihara, H. Hakemi, and J. Preston, Europ. Polym. J., 20, 225(1984) https://doi.org/10.1016/0014-3057(84)90042-9
  46. P. G. Martin and S. I. Stupp, Macromolecules, 21, 1222 (1988) https://doi.org/10.1021/ma00183a007
  47. J. -I. Jin and J. -H. Chang, Macromolecules, 22, 4402 (1989) https://doi.org/10.1021/ma00202a002
  48. J. -I. Jin, J. -H. Chang, and H. -K. Shim, Macromolecules, 22, 93 (1989) https://doi.org/10.1021/ma00191a019
  49. J. -I. Jin, C. -S. Kang, and J. -H. Chang, J. Polym. Sci., Polym. Chem. Ed., 31,259 (1993) https://doi.org/10.1002/pola.1993.080310130
  50. P. J. Flory and G. Ronca, Mol. Cryst. Liq. Cryst., 54, 289 (1979) https://doi.org/10.1080/00268947908084861
  51. R. Cai and E. T. Samulski, Liq. Cryst., 9, 617 (1991) https://doi.org/10.1080/02678299108030376
  52. J. -I. Jin, E. -J. Choi, and C. -S, Kang, J. Polym. Sci., Polym. Chem., 27, 2291 (1989) https://doi.org/10.1002/pola.1989.080270713
  53. H. R. Kricheldorf and R. Httner, Makromol. Chem. Rapid Commun., 11, 211, (1990) https://doi.org/10.1002/marc.1990.030110504
  54. H. R. Kricheldorf, A. Domschke, and G.. Schwarz, Macromolecules, 24, 1011 (1991) https://doi.org/10.1021/ma00005a007
  55. H. R. Kricheldorf, G. Schwarz, A. Domschke, and V. Linzer, Macromolecules, 26, 5161 (1993) https://doi.org/10.1021/ma00071a028
  56. H. R. Kricheldorf, G. Schwarz, T. Adebane, and D. J. Wilson, Molecules, 26, 6622 (1993)
  57. H. R Kricheldorf and V. Linzer, Polymer, 36, 1893 (1995) https://doi.org/10.1016/0032-3861(95)90937-W
  58. R. S. Irwin, Macromolecules, 26, 7125 (1993) https://doi.org/10.1021/ma00078a003
  59. S. Antonn, R W. Lenz, and J. -I. Jin, J. Polym. Sci., Polym. Chem. Ed., 19, 1901 (1981) https://doi.org/10.1002/pol.1981.170190804
  60. M. J. S. Dewar and R. S. Golberg, J. Org. Chem., 35, 2711 (1970) https://doi.org/10.1021/jo00833a051
  61. M. J. S. Dewar and R. M. Riddle, J. Am. Chem. Soc., 97, 6658 (1975) https://doi.org/10.1021/ja00856a010
  62. J. -I. Jin, E. -J. Choi, and S. -C. Ryu, J. Polym. Sci., Polym. Chem., 25, 241(1987) https://doi.org/10.1002/pola.1987.080250121
  63. G. W. Gray and P. A. Winsor, Liquid Crystals and Plastic Crystals, Ellis Horwood, Chichester, Vol. 1, p. 103 (1974)
  64. H. R. Kricheldorf, G. Schwarz, J. de Abajo, and J. de la Campa, Polymer, 32, 199 (1942)
  65. J. de Abajo, J. de la Campa, H. R. Kricheldorf, and G. Schwarz, Makromol. Chem., 191, 537 (1990) https://doi.org/10.1002/macp.1990.021910309
  66. Y. R. Parde, D. Shen, P. A. Gabori, F. W. Harris, S. Z. D. Cheng, J. Adduci, J. V. Facinelli, and R. W. Lenz, Macromolecules, 26, 3687 (1993) https://doi.org/10.1021/ma00066a030
  67. B. Reck and H. Ringsdorf, Makromol. Chem., Rapid Commun., 6, 291 (1985) https://doi.org/10.1002/marc.1985.030060414
  68. B. Reck and H. Ringsdorf, Makromol. Chem., Rapid Commun., 7, 389 (1986) https://doi.org/10.1002/marc.1986.030070612
  69. R. Zentel and M. Brehmer, Acta Polym., 47, 141 (1996) https://doi.org/10.1002/actp.1996.010470402
  70. H. Poths, R. Zentel, S. U. Vallerien, and F. Kremer, Mol. Cryst. Liq. Cryst., 203, 101 (1991) https://doi.org/10.1080/00268949108046050
  71. H. Kapitza and R. Zentel, Makromol. Chem., 192, 1859 (1991) https://doi.org/10.1002/macp.1991.021920821
  72. S. U. Vallerien, F. Kremer, H. Kapitza, and E. W. Fischer, Ferroelectrics, 109, 273 (1990) https://doi.org/10.1080/00150199008211425
  73. T. Pakula and R. Zentel, Makromol, Chem., 192, 2401 (1991) https://doi.org/10.1002/macp.1991.021921018
  74. R Zentel, G. F. Schmidt, J. Meyer, and M. Benalia, Liq. Cryst., 2, 651 (1987) https://doi.org/10.1080/02678298708086324
  75. M. Bremer and R. Zentel, Mol. Cryst. Liq. Cryst., 243, 353 (1994) https://doi.org/10.1080/10587259408037775
  76. X. L. Piao, Y. -S. Kim, Y. -K. Ynn, and J. -I. Jin, Macromolecules, 30, 2294 (1997) https://doi.org/10.1021/ma961649k
  77. J. -W. Lee and J. -I. Jin, Bull. Korean Chem. Soc., 21, 957 (2000)
  78. S. -W. Cha, J. -I, Jin, D. -C. Kim, and W. -C. Zin, Macromolecules, 34, 5342 (2001) https://doi.org/10.1021/ma001861v
  79. V. Percec and M. Kawasumi, Macromolecules, 25, 3843 (1992) https://doi.org/10.1021/ma00041a004
  80. V. Pcrcec, P. Chu, and M. Kawasumi, Macromolecules, 27, 4441 (1994) https://doi.org/10.1021/ma00094a005
  81. V. Percec, C. G. Cho, C. Pugh, and D. Tomazos, Macromolecules, 25, 1164 (1992) https://doi.org/10.1021/ma00029a025
  82. V. Percec, P. Chu, G. Ungar, and J. Zhou, J. Am. Chem. Soc., 117, 11441 (1995) https://doi.org/10.1021/ja00151a008
  83. S. Bauer, H. Fischer, and H. Ringsdorf, Angew. Chem. Int. Ed. Engl., 32, 1589 (1993) https://doi.org/10.1002/anie.199315891
  84. A. Kumar and S. Ramakrishnan, Macromolecules, 29, 2524 (1996) https://doi.org/10.1021/ma950948r
  85. A. Reina, A. Gerken, V. Zemann, and H. R. Kricheldorf, Macromol. Chem. Phys., 200, 1784 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990701)200:7<1784::AID-MACP1784>3.0.CO;2-B
  86. Y. -S. Park, J. -W. Lee, and J. -I. Jin, Bull. Korean Chem. Soc., 23, 1201 (2002) https://doi.org/10.5012/bkcs.2002.23.9.1201
  87. S. -W. Hahn, Y. -K. Yun, J. -I. Jin, and O. H. Han, Macromolecules, 31, 6417 (1998) https://doi.org/10.1021/ma971812r
  88. S. -H. Cho, N. -H. Lee, S. -W. Cha, and J. -J. Jin, Macromolecules, 34, 2138 (2001) https://doi.org/10.1021/ma000591d
  89. V. Percec, D. Schlueter, G. Ungar, S. Z. D. Cheng, and A. Zhang, Macromolecules, 31, 1745 (1998) https://doi.org/10.1021/ma971459p
  90. V. Percec, W. -D. Cho, P. E. Mosier, G. Ungar, and D. J. P. Yeardley, J. Am. Chem. Soc., 120, 11061 (1998) https://doi.org/10.1021/ja9819007
  91. S. D. Hudson, H. -T. Jung, W. -D. Cho, G. Johansson, G. Ungar, and S. K. Balagurusamy, Science, 278, 449 (1997) https://doi.org/10.1126/science.278.5337.449
  92. V. Percec, C. -H. Ahn, G. Ungar, D. J. P. Yeardley, M. Moller, and S. S. Sheiko, Nature, 391, 161 (1998) https://doi.org/10.1038/34384
  93. V. S. K. Balanurnscuny, G. Ungar, and J. Zhou, J. Am. Chem. Soc., 119, 1539 (1997) https://doi.org/10.1021/ja963295i
  94. V. Percec, G. Johansson, G. Ungar, and J. Zhou, J. Am. Chem. Soc., 118, 9855 (1996) https://doi.org/10.1021/ja9615738
  95. V. Percec, P. Chu, and M. Kawakami, Macromolecules, 27, 4441 (1994) https://doi.org/10.1021/ma00094a005
  96. F. Higashi, T. Mashimo, and I. Takahashi, J. Polym. Sci; Polym. Chem. Ed., 24, 47 (1986)
  97. F. Higashi, H. Shimazaki, and A. Kobayashi, Polym. Prepr. Jpn., 38, 2 (1989)
  98. F. Higashi, A. Hoshio, and J. Kiyoshige, J. Polym. Sci., Polym. Chem. Ed., 21, 3241 (1983) https://doi.org/10.1002/pol.1983.170211120
  99. S. Kitayama, K. Sanui, and N. Ogata, J. Polym. Sci, Polym. Chem. Ed, 22, 2705 (1984) https://doi.org/10.1002/pol.1984.170221034
  100. M. Ueda, H. Sugita, and M. Sato, J. Polym. Sci., Polym. Chem. Ed., 24, 1019 (1986) https://doi.org/10.1002/pola.1986.080240517
  101. G. C. Wu, H. Tanaka, K. Sanui, and N. Ogata, Polym. J., 14, 571(1982) https://doi.org/10.1295/polymj.14.571
  102. K. B. Wagener, J. M. Boncella, and J. G. Nel, Macromolecules, 24,2649 (1991) https://doi.org/10.1021/ma00010a001
  103. S. -H. Joo, Y. -K. Yun, J. -I. Jin, D. -C. Kim, and W. -C. Zin, Macromolecules, 33, 6704 (2000) https://doi.org/10.1021/ma0005926
  104. D. M. Walba, P. Keller, R. Shao, N. A. Clark, M. Hillmyer, and R. H. Grubbs, J. Am. Chem. Soc., 118, 2740 (1996) https://doi.org/10.1021/ja953779z