Protective Effects of $\alpha$-Tocopherol and Ischemic Preconditioning on Hepatic Reperfusion Injury

  • Lee Woo-Yang (College of Pharmacy, Sungkyunkwan University) ;
  • Lee Sun-Mee (College of Pharmacy, Sungkyunkwan University)
  • Published : 2005.12.01

Abstract

This study evaluated the effect of $\alpha$-tocopherol ($\alpha$-TC), ischemic preconditioning (IPC) or a combination on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). Rats were pretreated with $\alpha$-TC (20 mg/kg per day, i.p.) for 3 days before sustained ischemia. A rat liver was preconditioned with 10 min of ischemia and 10 min of reperfusion, and was then subjected to 90 min of ischemia followed by 5 h or 24 h of reperfusion. I/R increased the aminotransferase activity and mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutamate dehydrogenase activity. $\alpha$-TC and IPC individually attenuated these changes. $\alpha$-TC combined with IPC ($\alpha$-TC+IPC) did not further attenuate the changes. The mitochondrial glutathione content decreased after 5 h reperfusion. This decrease was attenuated by $\alpha$-TC, IPC, and $\alpha$-TC+IPC. The significant production of peroxides observed after 10 min reperfusion subsequent to sustained ischemia was attenuated by $\alpha$-TC, IPC, and $\alpha$-TC+IPC. The mitochondria isolated after I/R were rapidly swollen. However, this swelling rate was reduced by $\alpha$­TC, IPC, and $\alpha$-TC+IPC. These results suggest that either $\alpha$-TC or IPC reduces the level of mitochondrial damage associated with oxidative stress caused by hepatic I/R, but $\alpha$- TC combined with IPC offers no significant additional protection.

Keywords

References

  1. Azzi, A. and Stocker, A., Vitamin E: non-antioxidant roles. Prog. Lipid Res., 39, 231-255 (2000) https://doi.org/10.1016/S0163-7827(00)00006-0
  2. Bilzer, M. and Gerbes, A., Preservation injury of the liver: mechanisms and novel therapeutic strategies. J. Hepatol., 32, 508-515 (2000) https://doi.org/10.1016/S0168-8278(00)80404-3
  3. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  4. Buege, J. A. and Aust, S. D., Microsomal lipid peroxidation. Methods Enzymol., 52, 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  5. Burton, G. W., Ingold, K. U., and Foster, D. O., Comparison of free $\alpha$-tocopherol and $\alpha$-tocopherol acetate as sources of vitamin E in rats and humans. Lipids, 23, 834-840 (1988) https://doi.org/10.1007/BF02536201
  6. Clavien, P. A., Selzner, M., Rudiger, H. A., Graf, R., Kadry, Z., Rousson, V., and Jochum, W., A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann. Surg., 238, 843-850 (2003) https://doi.org/10.1097/01.sla.0000098620.27623.7d
  7. Clemens, M. G., McDonagh, P. F., Chaudry, I. H., and Baue, A. E., Hepatic microcirculatory failure after ischemia and reperfusion: improvement with ATP-$MgCl_2$treatment. Am. J. Physiol., 248, H804-H811 (1985)
  8. Elimadi, A., Sapena, R., Settaf, A., Le Louet, H., Tillement, J., and Morin, D., Attenuation of liver normothermic ischemiareperfusion injury by preservation of mitochondrial functions with S-15176, a potent trimetazidine derivative. Biochem. Pharmacol., 62, 509-516 (2001) https://doi.org/10.1016/S0006-2952(01)00676-1
  9. Ellis, G. and Goldberg, D. M., Optimal conditions for the kinetic assay of serum glutamate dehydrogenase activity at 37. Clin. Chem., 18, 523-527 (1972)
  10. Frederiks, W. M., Vogels, I. M., and Fronik, G. M., Plasma ornithine carbamyl transferase level as an indicator of ischaemic injury of rat liver. Cell Biochem. Funct., 2, 217-220 (1984) https://doi.org/10.1002/cbf.290020407
  11. Giakoustidis, D., Kontos, N., Tsantilas, D., and Botsoglou, N., Intramuscular administration of very high dose of atocopherol protects liver from severe ischemia/reperfusion injury. World J. Surg., 26, 872-877 (2002) https://doi.org/10.1007/s00268-002-6271-2
  12. Glanemann, M., Vollmar, B., Nussler, A. K., Schaefer, T., Neuhaus, P., and Menger, M. D., Ischemic preconditioning protects from hepatic ischemia/reperfusion-injury by preservation of microcirculation and mitochondrial redoxstate. J. Hepatol., 38, 59-66 (2003) https://doi.org/10.1016/S0168-8278(02)00327-6
  13. Griffith, O. W., Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem., 106, 207-212 (1980) https://doi.org/10.1016/0003-2697(80)90139-6
  14. Jaeschke, H., Reactive oxygen and ischemia/reperfusion injury of the liver. Chem. Biol. Interact., 79, 115-136 (1991) https://doi.org/10.1016/0009-2797(91)90077-K
  15. Javadov, S. A., Clarke, S., Das, M., Griffiths, E. J., Lim, K. H., and Halestrap, A. P., Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J. Physiol., 549, 513-524 (2003) https://doi.org/10.1113/jphysiol.2003.034231
  16. Johnson, D. and Lardy, H., Isolation of liver and kidney mitochondria. Methods Enzymol., 10, 456-470 (1967)
  17. Koneru, B., Reddy, M. C., dela Torre, A. N., Patel, D., Ippolito, T., and Ferrante, R. J., Studies of hepatic warm ischemia in the obese Zucker rat. Transplantation, 59, 942-946 (1995) https://doi.org/10.1097/00007890-199504150-00003
  18. Kowaltowski, A. J. and Vercesi, A. E., Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med., 26, 463-471 (1999) https://doi.org/10.1016/S0891-5849(98)00216-0
  19. Kurokawa, T., Nonami, T., Harada, A., Nakao, A., and Takagi, H., Mechanism and prevention of ischemia-reperfusion injury of the liver. Semin. Surg. Oncol., 12, 179-182 (1996) https://doi.org/10.1002/(SICI)1098-2388(199605/06)12:3<179::AID-SSU6>3.0.CO;2-4
  20. Leducq, N., Delmas-Beauvieux, M. C., Bourdel-Marchasson, I., Dufour, S., Gallis, J. L., Canioni, P., and Diolez, P., Mitochondrial permeability transition during hypothermic to normothermic reperfusion in rat liver demonstrated by the protective effect of cyclosporin A. Biochem. J., 336, 501-506 (1998) https://doi.org/10.1042/bj3360501
  21. Lee, S.-M. and Clemens, M. G., Effect of $\alpha$-tocopherol on hepatic mixed function oxidases in hepatic ischemia/ reperfusion. Hepatology, 15, 276-281 (1992) https://doi.org/10.1002/hep.1840150217
  22. Lee, S.-M., Park, M.-J., Cho, T.-S., and Clemens M. G., Hepatic injury and lipid peroxidation during ischemia and reperfusion. Shock, 13, 279-284 (2000) https://doi.org/10.1097/00024382-200004000-00005
  23. Lehmann, T. G., Wheeler, M. D., Schwabe, R. F., Connor, H. D., Schoonhoven, R., Bunzendahl, H., Brenner, D. A., Jude Samulski, R., Zhong, Z., Thurman, R. G., Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat. Hepatology, 32, 1255- 1264 (2000) https://doi.org/10.1053/jhep.2000.19814
  24. Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B., The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta, 1366, 177-196 (1998) https://doi.org/10.1016/S0005-2728(98)00112-1
  25. Lohse, W., Otto, G., Pahlig, H., Winkler, H., and Wolff, H., Prognostic value of glutamyl dehydrogenase activity in clinical liver transplantation. Transplantation, 38, 559 (1984)
  26. Metzger, J. and Lauterburg, B. H., Postischemic ATP levels predict hepatic function 24 hours following ischemia in the rat. Experientia, 44, 455-457 (1988) https://doi.org/10.1007/BF01940546
  27. Omar, R., Nomikos, I., Piccorelli, G., Savino, J., and Agarwal, N., Prevention of postischaemic lipid peroxidation and liver cell injury by iron chelation. Gut, 30, 510-514 (1989) https://doi.org/10.1136/gut.30.4.510
  28. Packer, L., Interactions among antioxidants in health and disease: Vitamin E and its redox cycle. Proc. Soc. Exp. Biol. Med., 200, 271-276 (1992) https://doi.org/10.3181/00379727-200-43433
  29. Peralta, C., Bulbena, O., Xaus, C., Prats, N., Cutrin, J. C., Poli, G., Gelpi, E., and Rosello-Catafau, J., Ischemic preconditioning: a defense mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion. Transplantation, 73, 1203-1211 (2002) https://doi.org/10.1097/00007890-200204270-00004
  30. Rudiger, H. A., Graf, R., and Clavien, P. A., Sub-lethal oxidative stress triggers the protective effects of ischemic preconditioning in the mouse liver. J. Hepatol., 39, 972-977 (2003) https://doi.org/10.1016/S0168-8278(03)00415-X
  31. Sindram, D., Rudiger, H. A., Upadhya, A. G., Strasberg, S. M., and Clavien, P. A., Ischemic preconditioning protects against cold ischemic injury through an oxidative stress dependent mechanism. J. Hepatol., 36, 78-84 (2002) https://doi.org/10.1016/S0168-8278(01)00229-X
  32. Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem., 27, 502-522 (1969) https://doi.org/10.1016/0003-2697(69)90064-5
  33. Tsai, B. M., Wang, M., March, K. L., Turrentine, M. W., Brown, J. W., and Meldrum, D. R., Preconditioning: evolution of basic mechanisms to potential therapeutic strategies. Shock, 21, 195-209 (2004) https://doi.org/10.1097/01.shk.0000114828.98480.e0
  34. Wolff, S. P., Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol., 233, 182-189 (1994) https://doi.org/10.1016/S0076-6879(94)33021-2
  35. Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P. X., and Kroemer, G., Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J. Bioenerg. Biomembr., 29, 185-193 (1997) https://doi.org/10.1023/A:1022694131572
  36. Zoratti, M. and Szabo, I., The mitochondrial permeability transition. Biochem. Biochim. Biophys. Acta, 1241, 139-176 (1995) https://doi.org/10.1016/0304-4157(95)00003-A
  37. Zwacka, R. M., Zhang, Y., Halldorson, J., Schlossberg, H., Dudus, L., and Engelhardt, J. F., $CD4^{+}$ T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J. Clin. Invest., 100, 279-289 (1997) https://doi.org/10.1172/JCI119533