Direct Involvement of G Protein $\alpha_{q/11}$ Subunit in Regulation of Muscarinic Receptor-Mediated sAPP$\alpha$ Release

  • Kim Jin Hyoung (Division of Pharmaceutical Bioscience, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim Hwa-Jung (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
  • Published : 2005.11.01

Abstract

The $G_{q/11}$ protein-coupled receptors, such as muscarinic (M1 & M3) receptors, have been shown to regulate the release of a soluble amyloid precursor protein (sAPP$\alpha$) produced from $\alpha$-secretase processing. However, there is no direct evidence for the precise characteristics of G proteins, and the signaling mechanism for the regulation of $G_{q/11}$ protein-coupled receptor mediated sAPP$\alpha$ release is not clearly understood. This study examined whether the muscarinic receptor-mediated release of sAPP$\alpha$ is directly regulated by $G\alpha_{q/11}$ proteins. The HEK293 cells were transiently cotransfected with muscarinic M3 receptors and a dominant-negative minigene construct of the G protein $\alpha$ subunit. The sAPP$\alpha$ release in the media was measured using an antibody specific for sAPP. The sAPP$\alpha$ release enhancement induced by muscarinic receptor stimulation was decreased by a $G_{q/11}$ minigene construct, whereas it was not blocked by a control minigene construct (the G$\alpha$ carboxy peptide in random order, G$\alpha_{q}$R) or $G\alpha_{j}$ constructs. This indicated a direct role of the $G\alpha_{q/11}$ protein in the regulation of muscarinic M3 receptor-mediated sAPP$\alpha$ release. We also investigated whether the transactivation of the epidermal growth factor receptor (EGFR) by a muscarinic agonist could regulate the sAPP$\alpha$ release in SH-SY5Y cells. Pretreatment of a specific EGFR kinase inhibitor, tyrophostin AG1478 (250 nM), blocked the EGF-stimulated sAPP$\alpha$ release, but did not block the oxoM­stimulated sAPP$\alpha$ release. This demonstrated that the transactivation of the EGFR by muscarinic receptor activation was not involved in the muscarinic receptor-mediated sAPP$\alpha$ release.

Keywords

References

  1. Blahos, J. N., Mary, S., Perroy, J., de Colle, C., Brabet, I., Bockaert, J., and Pin, J. P., Extreme C terminus of G protein a-subunits contains a site that discriminates between Gicoupled metabotropic glutamate receptors. J. Biol. Chem., 273, 25765-25769 (1998) https://doi.org/10.1074/jbc.273.40.25765
  2. Bourne, H. R., How receptors talk to trimeric G proteins. Curr. Opin. Cell Biol., 9, 134-142 (1997) https://doi.org/10.1016/S0955-0674(97)80054-3
  3. Buxbaum, J. D., Oishi, M., Chen, H. I., Pinkas-Kramarski, R., Jaffe, E. A., Gandy, S. E., and Greenfard, P., Cholinergic agonists and interleukin-1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc. Natl. Acad. Sci. U.S.A., 89, 10075-10078 (1992) https://doi.org/10.1073/pnas.89.21.10075
  4. Buxbaum, J. D., Ruefli, A. A., Parker, C. A., Cypess, A. M., and Greengard, P., Calcium regulates processing of the Alzheimer amyloid protein precursor in a protein kinase Cindependent manner. Proc. Natl. Acad. Sci. U.S.A., 91, 4489-4493 (1994) https://doi.org/10.1073/pnas.91.10.4489
  5. Canet-Aviles, R. M., Anderton, M., Hooper, N. M., Turner, A. J., and Vaughan, P. F., Muscarine enhances soluble amyloid precursor protein secretion in human neuroblastoma SHSY5Y by a pathway dependent on protein kinase C(alpha), src-tyrosine kinase and extracellular signal-regulated kinase but not phospholipase C. Brain Res. Mol. Brain Res., 102, 62-72 (2002) https://doi.org/10.1016/S0169-328X(02)00184-5
  6. Checler, F., Processing of the beta-amyloid precursor protein and its regulation in Alzheimer's disease. J. Neurochem., 65, 1431-1444 (1995) https://doi.org/10.1046/j.1471-4159.1995.65041431.x
  7. Cunnick, J. M., Dorsey, J. F., Standley, T., Turkson, J., Kraker, A. J., Fry, D. W., Jove, R., and Wu, J., Role of tyrosine kinase activity of epidermal growth factor receptor in the lysophosphatidic acid-stimulated mitogen-activated protein kinase pathway. J. Biol. Chem., 273, 14468-14475 (1998) https://doi.org/10.1074/jbc.273.23.14468
  8. Daub, H., Weiss, F. U., Wallasch, C., and Ullrich, A., Role of transactivation of the EGF receptor in signalling by G-proteincoupled receptors. Nature (London), 379, 557-560 (1996) https://doi.org/10.1038/379557a0
  9. Daub, H., Wallasch, C., Lankenau, A., Herrlich, A., and Ullrich, A., Signal characteristics of G protein-transactivated EGF receptor. EMBO J., 16, 7032-7044 (1997) https://doi.org/10.1093/emboj/16.23.7032
  10. De Strooper, B. and Annaert, W., Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci., 113, 1857-1870 (2000)
  11. Della Rocca, G. J., Van Biesen, T., Daaka, Y., Luttrell, D. K., Luttrell, L. M., and Lefkowitz, R. J., Ras-dependent mitogenactivated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J. Biol. Chem., 272, 19125-19132 (1997) https://doi.org/10.1074/jbc.272.31.19125
  12. Della Rocca, G. J., Maudsley, S., Daaka, Y., Lefkowitz, R. J., and Luttrell, L. M., Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J. Biol. Chem., 274, 13978-13984 (1999) https://doi.org/10.1074/jbc.274.20.13978
  13. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A., and Schlessinger, J., A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature (London), 383, 547-550 (1996) https://doi.org/10.1038/383547a0
  14. Eguchi, S., Numaguchi, K., Iwasaki, H., Matsumoto, T., Yamakawa, T., Utsunomiya, H., Motley, E. D., Kawakatsu, H., Owada, K. M., Hirata, Y., Marumo, F., and Inagami, T., Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogenactivated protein kinase activation in vascular smooth muscle cells. J. Biol. Chem., 273, 8890-8896 (1998) https://doi.org/10.1074/jbc.273.15.8890
  15. Gilchrist, A., Mazzoni, M., Dineen, B., Dice, A., Linden, J., Proctor, W. R., Lupica, C. R., Dunwiddie, T., and Hamm, H. E., Antagonists of the receptor-G protein interface block Gicoupled signal transduction. J. Biol. Chem., 273, 14912-14919 (1998) https://doi.org/10.1074/jbc.273.24.14912
  16. Gilchrist, A., Bünemann, M., Li, A., Hosey, M. M., and Hamm, H. E., A dominant-negative strategy for studying roles of G proteins. J. Biol. Chem., 274, 6610-6616 (1999) https://doi.org/10.1074/jbc.274.10.6610
  17. Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B., and Hoffmann, K. P., Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science, 241, 832-835 (1988) https://doi.org/10.1126/science.3136547
  18. Hung, A. Y., Haass, C., Nitsch, R. M., Qiu, W. Q., Citron, M., Wurtman, R. J., Growdon, J. H., and Selkoe, D. J., Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J. Biol. Chem., 268, 22959-22962 (1993)
  19. Keely, S. J., Uribe, J. M., and Barrett, K. E., Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. Implications for carbachol-stimulated chloride secretion. J. Biol. Chem., 273, 27111-27117 (1998) https://doi.org/10.1074/jbc.273.42.27111
  20. Keely, S. J., Calandrella, S. O., and Barrett, K. E., Carbacholstimulated Transactivation of Epidermal Growth Factor Receptor and Mitogen-activated Protein Kinase in $T_{84}$ Cells Is Mediated by Intracellular $Ca^{2+}$, PYK-2, and p60src J. Biol. Chem., 275, 12619-12625 (2000) https://doi.org/10.1074/jbc.275.17.12619
  21. Lee, R. K. K., Wurtman, R. J., Cox, A. J., and Nitsch, R. M., Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. U.S.A., 92, 8083-8087 (1995) https://doi.org/10.1073/pnas.92.17.8083
  22. Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J. M., Plowman, G. D., Rudy, B., and Schlessinger, J., Protein tyrosine kinase PYK2 involved in $Ca^{2+}$-induced regulation of ion channel and MAP kinase functions. Nature (London), 376, 737-745 (1995) https://doi.org/10.1038/376737a0
  23. Levitzki, A. and Gazit, A., Tyrosine kinase inhibition: an approach to drug development. Science, 267, 1782-1788 (1995) https://doi.org/10.1126/science.7892601
  24. Li, X., Lee, J. W., Graves, L. M., and Earp, H. S., Angiotensin II stimulates ERK via two pathways in epithelial cells: protein kinase C suppresses a G-protein coupled receptor-EGF receptor transactivation pathway. EMBO J., 17, 2574–2583 (1998)
  25. Luttrell, L. M., Della Rocca, G. J., van Biesen, T., Luttrell, D. K., and Lefkowitz, R. J., G-betagamma subunits mediate Srcdependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J. Biol. Chem., 272, 4637-4644 (1997) https://doi.org/10.1074/jbc.272.7.4637
  26. Martin, E. L., Rens-Domiano, S., Schatz, P. J., and Hamm, H. E., Potent peptide analogues of a G protein receptor-binding region obtained with a combinatorial library. J. Biol. Chem., 271, 361-366 (1996) https://doi.org/10.1074/jbc.271.1.361
  27. Mills, J. and Reiner, P. B., Regulation of amyloid precursor protein cleavage. J. Neurochem., 72, 443-460 (1999) https://doi.org/10.1046/j.1471-4159.1999.0720443.x
  28. Morris, A. J. and Malbon, C. C., Physiological regulation of G protein-linked signaling. Physiol. Rev., 79, 1373-430 (1999) https://doi.org/10.1152/physrev.1999.79.4.1373
  29. Nitsch, R. M., Slack, B. E., Wurtman, R. J., and Growdon, J. H., Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science, 258, 304-307 (1992) https://doi.org/10.1126/science.1411529
  30. Onrust, R., Herzmark, P., Chi, P., Garcia, P. D., Lichtarge, O., Kingsley, C., and Bourne, H. R., Receptor and bg binding sites in the a subunit of the retinal G protein transducin. Science, 275, 381-384 (1997) https://doi.org/10.1126/science.275.5298.381
  31. Petanceska, S. S. and Gandy, S., The phosphatidylinositol 3-kinase inhibitor wortmannin alters the metabolism of the Alzheimer's amyloid precursor protein. J. Neurochem., 73, 2316-2320 (1999) https://doi.org/10.1046/j.1471-4159.1999.0732316.x
  32. Pierce, K. L., Tohgo, A., Ahn, S., Field, M. E., Luttrell, L. M., and Lefkowitz, R. J., Epidermal growth factor (EGF) receptordependent ERK activation by G protein-coupled receptors. J. Biol. Chem., 276, 23155-23160 (2001) https://doi.org/10.1074/jbc.M101303200
  33. Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., and Ullrich, A., EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature, 402, 884-888 (1999) https://doi.org/10.1038/47260
  34. Resenick, M. M., Watanabe, M., Lazarevic, M. B., Hatta, S., and Hamm, H. E., Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J. Biol. Chem., 269, 21519-21525 (1994)
  35. Slack, B. E., Nitsch, R. M., Livneh, E., Kunz, G. M., Breu, J., Eldar, H., and Wurtman, R. J., Regulation by phorbol esters of amyloid precursor protein release from Swiss 3T3 fibroblasts overexpressing protein kinase Ca. J. Biol. Chem., 268, 21097-21101 (1993)
  36. Slack, B. E., Breu, J., Muchnicki, L., and Wurtman, R. J., Rapid stimulation of amyloid precursor protein release by epidermal growth factor: role of protein kinase C. Biochem. J., 327, 245-249 (1997) https://doi.org/10.1042/bj3270245
  37. Slack, B. E., The m3 muscarinic acetylcholine receptor is coupled to mitogen-activated protein kinase via protein kinase C and epidermal growth factor receptor kinase. Biochem. J., 348, 381-387 (2000) https://doi.org/10.1042/0264-6021:3480381
  38. Soltoff, S. P., Related adhesion focal tyrosine kinase and the epidermal growth factor receptor mediate the stimulation of mitogen-activated protein kinase by the G-protein-coupled P2Y2 receptor. Phorbol ester or [$Ca^{2+}$]i elevation can substitute for receptor activation. J. Biol. Chem., 273, 23110-23117 (1998) https://doi.org/10.1074/jbc.273.36.23110
  39. Soltoff, S. P., Avraham, H., Avraham, S., and Cantley, L. C., Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J. Biol. Chem., 273, 2653–2660 (1998)
  40. Sprang, S. R., G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem., 66, 639-678 (1997) https://doi.org/10.1146/annurev.biochem.66.1.639
  41. Tasi, W., Morielli, A. D., and Peralta, E. G., The m1 muscarinic acetylcholine receptor transactivates the EGF receptor to modulate ion channel activity. EMBO J., 16, 4597-4605 (1997) https://doi.org/10.1093/emboj/16.15.4597
  42. Villa, A., Santiago, J., Garæia-Silva, S., Ruiz-León, Y., and Pascual, A., Serum is required for release of Alzheimer's amyloid precursor protein in neuroblastoma cells. Neurochem. Int., 41, 261-269 (2002) https://doi.org/10.1016/S0197-0186(02)00019-0
  43. Wolf, B. A., Werkin, A. M., Jolly, Y. C., Yasuda, R. P., Wolfe, B. B., Konrad, R. J., Manning, D., Ravi, S., Williamson, J. R., and Lee, V. M.-Y., Muscarinic regulation of Alzheimer's disease amyloid precursor protein secretion and amyloid $\beta$- protein production in human NT2N cells. J. Biol. Chem., 270, 4916-4922 (1995) https://doi.org/10.1074/jbc.270.9.4916
  44. Zwick, E., Daub, H., Aoki, N., Yamaguchi-Aoki, Y., Tinhofer, I., Maly, K., and Ullrich, A., Critical Role of Calcium- dependent Epidermal Growth Factor Receptor Transactivation in PC12 cell membrane depolarization and bradykinin signaling, J. Biol. Chem., 272, 24767-24770 (1997) https://doi.org/10.1074/jbc.272.40.24767