Sanguiin H-6 Blocks Endothelial Cell Growth through Inhibition of VEGF Binding to VEGF Receptor

  • Lee Sung-Jin (Gyeonggi Regional Research Center, Hankyong National University) ;
  • Lee Hak-Kyo (Gyeonggi Regional Research Center, Hankyong National University)
  • Published : 2005.11.01

Abstract

The vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, which is a process where new blood vessels develop from the endothelium of a pre-existing vasculature. VEGF exerts its activity by binding to its receptor tyrosine kinase, KDR/Flk-1, which is expressed on the surface of endothelial cells. A methanol extract and organic solvent (n-hexane, ethyl acetate, n-butanol, aqueous) fractions from Rubus coreanus were examined for their inhibitory effects on VEGF binding to the VEGF receptor. The methanol extract from the crude drug were found to significantly inhibit VEGF binding to the VEGF receptor ($IC_{50}$$\thickapprox$27 $\mu$g/mL). Among the fractions examined, the aqueous fraction from the medicinal plant showed potent inhibitory effects against the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ in a dose­dependent manner ($IC_{50}$$\thickapprox$11 $\mu$g/mL). Sanguiin H-6 was isolated as an active principle from the aqueous fraction, and inhibited the binding of KDR/Flk-1-Fc to immobilized $VEGF_{165}$ in a dose­dependent manner ($IC_{50}$$\thickapprox$0.3 $\mu$g/mL). In addition, sanguiin H-6 efficiently blocked the VEGF­induced HUVEC proliferation in a dose-dependent manner ($IC_{50}$$\thickapprox$7.4 $\mu$g/mL) but had no effect on the growth of HT1080 human fibrosarcoma cells. This suggests that sanguiin H-6 might be a potential anti-angiogenic agent.

Keywords

References

  1. Bae, D. G., Gho, Y. S., Yoon, W. H., and Chae, C. B., Argininerich anti-vascular endothelial growth factor peptides inhibit tumor growth and metastasis by blocking angiogenesis. J. Biol. Chem., 275, 13588-13596 (2000) https://doi.org/10.1074/jbc.275.18.13588
  2. Boehm-Viswanathan, T., Is angiogenesis inhibition the Holy Grail of cancer therapy? Curr. Opin. Oncol., 12, 89-94 (2000) https://doi.org/10.1097/00001622-200001000-00015
  3. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435-439 (1996) https://doi.org/10.1038/380435a0
  4. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K. S., Powell-Braxton, L., Hillan, K. J., and Moore, M. W., Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380, 439-442 (1996) https://doi.org/10.1038/380439a0
  5. Ferrara, N., VEGF and the quest for tumor angiogenesis factors. Nat. Rev. Cancer, 2, 795-803 (2002) https://doi.org/10.1038/nrc909
  6. Folkman, J., What is the evidence that tumors are angiogenesis-dependent? J. Natl. Cancer Inst., 82, 4-6 (1991)
  7. Gospodarowicz, D., Abraham, J. A., and Schilling, J., Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc. Natl. Acad. Sci. U.S.A., 86, 7311-7315 (1989) https://doi.org/10.1073/pnas.86.19.7311
  8. Khatri, J.J., Johnson, C., Magid, R., Lessner, S. M., Laude, K. M., Dikalov, S. I., Harrison D.G., Sung H. J., Rong, Y., and Galis Z. S., Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation, 109, 520-525 (2004) https://doi.org/10.1161/01.CIR.0000109698.70638.2B
  9. Kim, C. W., Lee, H. M., Lee, T. H., Kang, C., Kleinman, H. K., and Gho, Y. S., Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res., 62, 6312-6317 (2002a)
  10. Kim, Y. M., Hwang, S., Kim, Y. M., Pyun, B. J., Kim, T. Y., Lee, S. T., Gho, Y. S., and Kwon, Y. G., Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem., 277, 27872-27879 (2002b) https://doi.org/10.1074/jbc.M202771200
  11. Kondo, T., Ohta, T., Igura, K., Hara, Y., and Kaji, K., Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett., 180, 139-144 (2002) https://doi.org/10.1016/S0304-3835(02)00007-1
  12. Lamy, S., Gingras, D., and Beliveau, R., Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res., 62, 381-385 (2002)
  13. Lee, S. J., Lee, H. M., Ji, S. T., Lee, S. R., Mar, W., and Gho, Y. S., 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose blocks endothelial cell growth and tube formation through inhibition of VEGF binding to VEGF receptor. Cancer Lett., 208, 89-94 (2004) https://doi.org/10.1016/j.canlet.2003.11.008
  14. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., and Frrarara, N., Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246, 1306-1309 (1989) https://doi.org/10.1126/science.2479986
  15. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P., Risau, W., and Ullrich, A., High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 72, 835-846 (1993) https://doi.org/10.1016/0092-8674(93)90573-9
  16. Ncosia, R. F., Tchao, R., and Leighton, J., Angiogenesisdependent tumor spread in reinforced fibrin clot culture. Cancer Res., 43, 2159-2166 (1983)
  17. Nonaka, G. I., Tanaka, T., Nita, M., and Nishioka, I., A dimeric hydrolysable tannin, sanguiin H-6 from Sanguisorba officinalis L. Chem. Pharm. Bull., 30, 2255-2257 (1982) https://doi.org/10.1248/cpb.30.2255
  18. Risau, W., Angiogenic growth factors. Prog. Growth Factor Res., 2, 71-79 (1990) https://doi.org/10.1016/0955-2235(90)90010-H
  19. Shalaby, F., Rossant, J., Yamaguch, T. P., Gertsenstein, M., Wu, X.F., Breitman, M. L., and Schuh, S. C., Failure of bloodisland formation vasculogenesis in Flk-1-deficient mice. Nature, 376 62-66 (1995) https://doi.org/10.1038/376062a0
  20. Veikkola, T. and Alitalo, K., VEGFs, receptors and angiogenesis. Semin. Cancer Biol., 9, 211-220 (1999) https://doi.org/10.1006/scbi.1998.0091