Effect of Lactic Acid Bacteria (Lactobacillus acidophilus, Streptococcus thermophilus, Bsfidobacterium bifidum) on the Enhancement of the Production of Nitric Oxide and TNF-$\alpha$ in RAW 264.7 Macrophage Cell

RAW 264.7 대식세포에서의 유산균에 의한 Nitric Oxide와 $TNF-{\alpha}$의 생성 증가 효과

  • Published : 2005.12.01

Abstract

The immune reinforcement of the probiotic lactic acid bacteria Lactobacillus acidophilus, Streptococcus thermophilus and Bifidobacterium bifidum was studied in RAW 264.7 cell line treated with diluted solution (dilution to $2^{5}$) of the supernatnats of lactic acid bacteria. RAW 264.7 cell line was used as a macrophage model to assess the effects of lactic acid bacteria on the production of nitric oxide (NO) and cytokine tumor necrosis factor (TNF)-$\alpha$ and cell morphological changes. The production of NO and TNF-$\alpha$ were largely affected by lactic acid bacteria in dose-dependent manner in 24 or 48 hr cultures and cell morphological changes were also largely affected by lactic acid bacteria. Especially Bifidobacterium bifidum differentially stimulated the production of NO and TNF-$\alpha$. NO production was increased by Bifidobacterium bifidum 25 $\mu$l/ml more than LPS (20 ng/ml) control, and TW-$\alpha$ by Bifidobacterium bifidum 6.25 $\mu$l/ml more than LPS (10 ng/ml) control. The in vitro approaches employed here should be useful in further characterization of the effects of lactic acid bacteria on systemic immunity.

Keywords

References

  1. Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. and Swings, J. : Polyphasic taxonomy, a consensus approach to bacterial systematics. Micro. Reviews 60, 407 (1996)
  2. Perdigon, G., de Macias, M. E., Alvarez, S., Oliver, G. and de Ruiz Holgado, A. A. : Effect of perorally administered lactobacilli on macrophage activation in mice. Infect. Immun. 53, 404 (1986)
  3. Lefrancois, L. : Basic aspects of intraepithelial lymphocyte immnobiology. In Handbook of Mucosal Immunologyeds P. L. Ogra, J. Mestecky, M. E. Lamm, W. Strober; J. R. McGhee and J. Bienenstock, Academic Press, San Diego pp. 287 (1994)
  4. Taguchi, T., Aicher; W. K., Fujihashi, K., Yamamoto, M., McGhee, J. R., Bluestone, J. A. and Kiyono, H. : Novel function for intestinal intraepithelial lymphocytes: murine $CD^3 +$, ${\gamma}/{\delta}$ TCR+ T cells produce $IFN-{\gamma}$ and IL-5. Joural of Immunology 147, 3736 (1991)
  5. Johansson, M. L., Molin, G., Jeppsson, B., Nobaek, S., Ahrne, S. and Bengmark, S. : Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colon isation of human intestinal mucosa and effect on the indigenous flora. Applied and Environmental Microbiology 59, 15 (1993)
  6. Schiffrin, E. J., Brassart, D., Servin, A., Rochat, F. and Dommet Hughes, A. : Immune modulation of blood leukocytes in humans by lactic acid bacteria:criteria for strain selection. American Journal of Clinical Nutrition 66, 515S (1997)
  7. Nussler, A. K. and Thomson, A. W. : Immunomodulatory agents in the laboratory and clinic. Parasitology 105, S5. (1992) https://doi.org/10.1017/S0031182000075326
  8. Sekine, K., Watanabe-Sekine, E., Ohta, J., Toida, T., Tatsuki, T., Kawashima, T. and Hashimoto, Y. : Induction and activation of tumoricidal cells in vivo and in vitro by the bacterial cell wall of Bifidobacterium infantis. Bifidobact. Microfl. 13, 65 (1994)
  9. Hibbs, J. B., Lambert, L. H. and Remington, J. S. : In vtiro nonimmunological destruction of cells with abnormal growth characteristics by adjuvant activated macro phages. Proc. Soc. Exp. Biol. 139, 1049 (1972)
  10. Loewenstein, J., Rottem, S. and Gallily, R : Induction of macrophage -mediated cytolysis of neoplastic cells by mycoplasmas. Cell. Immunol. 77, 290 (1983) https://doi.org/10.1016/0008-8749(83)90029-1
  11. Pissens, W. F., Churchill, W. H. and David, J. R. : Macrophages activated in vitro with lymphocyte mediators kill neoplastic but not normal cells. J. Immunol. 114, 293 (1975)
  12. Schultz, R. M., Chirigos, M. A. and Heine, U. I. : Functional and morphological haracteristics of interferon-treated macrophage. Cell. Immunol. 35, 84 (1978) https://doi.org/10.1016/0008-8749(78)90128-4
  13. Adams, D. O. and MarinI, P. A. : Evidence for a multistep mechanism of cytolysis by G-activated macrophages: the interrelationship between the capacity for cytolysis, target binding, and secretion of cytolytic factor. J. Immunol. 126, 981 (1981)
  14. Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N. and Williamson, B. : An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 72, 3666 (1975)
  15. Cui, S., Jonathan, S., Reichner, Romeo, B., Mateo. and Albina, J. E. : Activated murine macrophage induce apoptosis in tumor cells through ntric oxide-dependent or independent mechanism. Cancer Res. 54, 2462 (1994)
  16. Ichinose, Y., Bakouche, O., Tsao, J. Y. and Fildler, I. J. : Tumor necrosis factor and IL-1 associated with plasma membrane of activated human monocytes lyse monokine-sensitive but not monokine-resistant tumor cells whereas viable activated monocytes lyse both. J. Immunol. 141, 512 (1988)
  17. Suttles, J., Giri, J. G. and Mizel, S. B. : IL-1 secretion by macrophages. Enhancement of IL-1 secretion and processing by calcium inophores. J. Immunol. 144, 175 (1990)
  18. Halliwell, B. and Cutteridge, J. M. C. : Oxygen toxicity, Oxygen radicals, transition metals and disease. Biochemical. J. 219, 1 (1984)
  19. Moncada, S. and Higgs, A. : The arginine-nitric oxide pathway. New Engl. J. Med. 329, 2002 (1993) https://doi.org/10.1056/NEJM199312303292706
  20. Johnson, W. J., Somers, S. D. and Adams, D. O. : Activation of macrophage for tumor cytotoxicity. Contemp. Top. Immunobiol. 14, 127 (1983)
  21. Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H., and Russell, S. W. : Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synerge between interferon-gamma and lipopolysaccharide. J. Biol. Chem. 268, 1908 (1993)
  22. Bor-Sen Wang, Jia-Huey Chen, Yu-Chih Liang and Pin-Der Duh : Effects of Welsh onion on oxidation of low-density lipoprotein and nitric oxide production in macrophage cell line RAW 264.7. Food Chemistry 91, 147 (2005) https://doi.org/10.1016/j.foodchem.2004.06.009
  23. Md, S., Moochhala, S. M. and Siew-Yang, K. L. : The role of inducible nitric oxide synthase inhibitor on the arteriolar hyporesponsiveness in hemorrhagic-shocked rats. Life Science 73, 1825 (2003) https://doi.org/10.1016/S0024-3205(03)00510-1
  24. Oshima, H. and Bartsch, H. : Chronic infections and inflammatory processes as cancer risk factors; possible role of nitric oxide in carcinogenesis. Mutal. Res. 305, 253 (1994)
  25. Marin, M. L., Lee, J. H., Murtha, J., Ustunol, Z. and Pestka, J. J. : Differential cytokine production in clonal macrophage and T-cell lines cultured with Bifidobacteria. J. Dairy Sci. 80, 2713 (1997) https://doi.org/10.3168/jds.S0022-0302(97)76232-5
  26. Ulch, T. T., Shin, S. S. and del Castillo, J. : Haematologic efffects of TNF. J. Res. Immunol. 144, 347 (1993) https://doi.org/10.1016/S0923-2494(93)80079-E
  27. Fukuo, K., Inoue, T., Morimoto, S. Nakahashi, T., Yasuda, O., Kitano, S., Sasada, R. and Ogigara, T. : Nitric oxide mediates cytotoxicity and basic fibroblast growth factor release in cultured vascular smooth muscle cells. A possible mechanism of neo vascularization in atherosclerotic plaques. J. Clin. Invest. 95, 668 (1995) https://doi.org/10.1172/JCI117809
  28. Laskin, D. L. and Pendino, J. : Macrophages and inflammatory mediators in tissue injury. Annu. Rev. Pharmacol. Toxicol. 35, 655 (1995) https://doi.org/10.1146/annurev.pa.35.040195.003255
  29. Sarih, M., Souvannavong, V. and Adam, A. : Nitric oxide synthase induces macrophage death by apoptosis. Biochem. Biophys. Res. Commun. 191, 503 (1993) https://doi.org/10.1006/bbrc.1993.1246
  30. Stuehr, D. J. and Nathan, C. F. : Nitric oxide, a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169, 1543 (1989) https://doi.org/10.1084/jem.169.5.1543
  31. Lee, J., Amentani, A., Enomoto, A., Sato, Y., Motoshima, H., Ike, F. and Kaminogawa, S. : Screening for the immunopotentiating activity of food microorganism and enhancement of the immune response by Bifidobacterium adolescentis M1014. Siosci. Biotech. Biochem. 57, 2127 (1993) https://doi.org/10.1271/bbb.57.2127
  32. Kado-Oka, Y., Fujiwara, S. and Hirota, T. : Effects of bifidobacterial cells on mitogenic response of splenocytes and several functions of phagocytes. Milchwissenshaft 46, 626 (1991)
  33. Gomez, E., Melgar, M. M., Silva, G. P., Portoles, A. and Gil, I.: Exocellular products from Bifidobacterium adolescentis as immunomodifiers in the lymphoproliferative response of mouse splenocytes. FEMS Microbiol. Lett. 56, 47 (1988)
  34. Hatcher, G. E. and Lambrecht, R. S. : Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid- producing bacteria. J. Dairy Sci. 76, 2485 (1993) https://doi.org/10.3168/jds.S0022-0302(93)77583-9
  35. Sekine, K., Watanabe-Sekine, E., Ohta, J., Toida, T., Tatsuki, T. K., Kawashima, T. and Hashimoto, Y. : Induction and activation of tumoricidal cells in vivo and in vitro by the bacterial cell wall of Bifidobacterium infantis. Bifidobact. Microfl. 13, 65 (1994)
  36. Sekine, K., Watanabe-Sekine, E., Toida, T., Kasashima, T. and Hashimoto, Y. : Adjuvant activity of the cell wall of Bifidobacteirium infantis for in vivo immune responses in mice. Immunopharmacol. Immunotoxicol. 16, 589 (1994) https://doi.org/10.3109/08923979409019741
  37. Chun, Q. C., Assreuy, J., Xu, D., Charles, I., Liew, F. Y. and Moncada, S. : Repeated induction of nitric oxide synthetase and leishmanicidal activity in murine macrophage. Eur. J. Immunol. 23, 1385 (1993) https://doi.org/10.1002/eji.1830230631