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Abstract

Traditional Internet applications such as FTP and E-mail are increasingly sharing bandwidth with newer, more
demanding applications such as Web browsing, IP telephony, video conference and online games. These new applications
require Quality of Service (QoS), in terms of delay, loss and throughput that are different from QoS requirements of
traditional applications. Unfortunately, current Active Queue Management (AQM) approaches offer monolithic best-effort
service to all Internet applications regardless of the current QoS requirements. This paper proposes and evaluates a new
AQM technique, called MCDT that provides dynamic and separated buffer threshold for each Applications, those are FTP
and e-mail on TCP traffic, streaming services on tagged UDP traffic, and the other services on untagged UDP traffic.
Using a new QoS metric, our simulations demonstrate that MCDT vyields higher QoS in terms of the delay variation and a

packet loss than RED when there are heavy UDP traffics that include streaming applications and data applications. MCDT

fits the current best-effort Internet environment without high complexity.
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1. Introduction

The Internet today carries traffic for applications
with a wide range of delay, loss and throughput
requirements, as depicted in Figure 1. Traditional
applications such as FTP and E-mail on - TCP
protocol that are primarily concerned with throughput
and can tolerate high delays due to long router
queues in exchange for high throughput. On the other
hand, emerging applications -such as IP telephony,
video conferencing and networked games on Tagged
UDP have different requirements in terms of
and delay than - these traditional
also,
sensitive and non-throughput - sensitive applications
on Untagged UDP need control.

In particular, multimedia applications have more
stringent delay and loss constraints than throughput

throughput

applications. In these reasons, non-delay

constraints. This leaves delay as their major
impediment to acceptable quality. Since Data
applications are moderately sensitive to delay as well
as throughput and are loss-insensitive by using
re-transfer techniques, it falls in the middle in terms
of the delay and throughput requirement and falls in
the left-middle in terms of the loss and throughput
requirement ¥,

Unfortunately, current routers do not provide
Quality of Service(QoS) adapted to the mixed traffics.
Most Active Queue Management(AQM) techniques
are either heavy-weight by requiring significant
architectural changes or focus’ on providing higher
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Fig. 1.

Throughput, Delay and Loss.

- YEOjC|o] ERIEE Y% MCDT (Multiple—Class Dynamic Threshold) 2112|&

(864)

ddE 9

throughput - at the router without consideration for
queuing delay and loss ratio.
1. Due to the simplicity of the First-In First-Out

(FIFO)® queving mechanism, drop-tail queues are
the most widely used queuing -mechanism in
Tnternet routers today. When faced with persistent
congestion, drop-tail routers yield high delay for all
application’s  traffics  passing  through  the
bottlenecked  router. This best-effort service
provides no consideration for multimedia traffics or

even data traffic that can be severely affected by
high delay. Clearly, drop-tail provides very limited

QoS support. ‘

The series of Random Early Detection (RED)Y,
like Adaptive RED(ARED)” and Flow RED(FRED),
the best-known AQM mechanism, attempts to keep
the average queue size at the router low while
keeping throughput high. By de’oecting the onset of
congestion earlier than drop-tail, RED avoids the
global synchronization of TCP traffics that hampers
aggregate throughput.

}CB’I“] provides class-based treatment with
guarantees on bandwidth limits for different classes.
However both delay and loss constraints are not
considered in CBT, also application delay constraints
are not considered.

This paper presents a new AQM technique called
Multiple-Class Dynamic ~ Threshold (MCDT) to
provide class-based QoS. MCDT will satisfy QoS
constraints of Table 1 without adding much
complexity and additional policing mechanisms. This
study MCDT via
mixed-traffic scenarios.

The remaining parts of the paper are organized as

evaluates simulation under

NMZ2 AQM Halg 28 QoS 27 AN

LV
Table 1. The QoS constraints Table -for new AQM
technique, - two bold ‘high” - constraints . are
important QoS elements.
TCP traffic - Untagged Tagged UDP
Constraints  (FTP, UDP (Streaming
e-mail)  (The others)  Applications)
Throughput =~ High Medium Medium
Loss ratio  Medium Low High-
Delay Medium - Low High
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follows: The  MCDT is explained in section II. In
section III, simulation results are shown. Finally, we
make conclusion in section IV.

Io. MCDT Algorithm

In this chapter, first, the operation of the dynamic
threshold (DT) scheme that provides separate buffer
space: to. TCP, Tagged UDP, and Untagged UDP
traffic is described. On the basis of the DT scheme,
the proposed AQM algorithm, MCDT (Multiple-Class
Dynamic Threshold) is also described

1. Dynamic Threshold

In this study, each traffic class(TCP, Tagged UDP,
and Untagged UDP traffics) gets QoS by separated
logical buffer that is ‘divided by dynamic buffer
threshold. By DT(Dynamic Threshold)” method, the
relationship of threshold and total shared buffer for
each class or flow i is given as

1(6)= a-(B-0())-a-(B-22'(1) "
If there are S very active classes, then the total
buffer occupancy Q in steady state will be

Q=8-T+Q (2)

The steady-state length of each controlled class
threshold can be founded by substituting (2) into (1)
and solving for T.

a-(B-0(1))

1+a-S

r= 3)

The amount of shared buffer © held in reserve by
the algorithm is as follows

(3-9)

" 1+a-S

In DT algorithm, every Class has same @ value
that is selected by user, so every class also has same
threshold, T. If we can decide proper @ values for

@)

(865)
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Table 2. Notation of the DT method.

Notation Expression Steady-state value

T(t) Threshold T
O(t)  sum of 21 0
0'(*) Queue length of class i
B Total buffer space
S Number of the very active
class
Q Space occupied by the
uncontrolled queue (Q <T )
(C] Wastage of DT algorithm

each class, then each class can occupy fitting buffer
space by dynamic and weighted Threshold.

2. MCDT

If each class has @ value respectively, than
formula (3) will be

_ Q. -(B - Q(t))
¢ 1+ a.

)

Notation e and % is the threshold and @ value
of specific class C. In this paper, we will represent

% as number of arrived packet during a certain
period. But, simple count is insufficient to provide
QoS as Table 1. TCP class needs high throughput
and MMU class needs low loss ratio and low delay.

For these requirements, we can set % as follows:

o, =tcp _count+ 0.2 x mmu _count + 0.4 xudp _count
©)
7

®

o

o = 0.8Xmmu _count

o, =0.6xXudp _count

For the efficient usage of wastage in (4), we add
the residue buffer space divided by number of active
classes to thresholds.

R=(B-XT.)/S ©)

When every update is occurred the weighting
factor (we set 0.3) is applied. Finally, MCDT sets
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each class’ threshold as follow

T.= 0.7x o (B-00) . +03xT,.
I+2. (10)

As shown in Table 1, traffics are classified by 3
classes; TCP traffic class, Tagged UDP traffic class
(MMU traffic class) and Untagged UDP class (UDP
traffic class). Using these 3 classes’ thresholds, we
can divide shared physical buffer into three logical
buffers. Briefly, MCDT sets three classes’ thresholds

Mode A Mode B Mode C

a8 20 MCDTe Al 71| Z2EElY 2E

Fig. 2. 3 proto type modes of MCDT. the difference of
each mode is the mechanism of logical queue.
By simulation one mode will be chosen.

dds 9

periodically by counting each class’ arriving packets.
If a new packet arrives, then MCDT: process it as
follows:

® (lassification: Every packet is classified by its
header information like'™.

@ Counting: increase the
count_class).

® Threshold Test: I the length of class’ logical
queue exceeds the th_class, then drop EOL packet.
® Enque: Enque the packet to class’ logical queue.

Class’ counter (++

The MCDT has three prototype modes like Figure
2. The sequence of outgoing packet is the same as
sequence of incoming, id. So, there are no additional
processes in deque procedure. Mode A is the simplest
mode, and mode B, mode C have better QoS
performance than mode A with more complexity. In
the next section, these three modes are analyzed by
simulation.’ '

I. Simulations and Results

We ran a simulation for each of RED, CBT, FIFO

100Mbps, Sms

10Mbps, 10ms

55 FTP-TCP ; » 55 FTP-TCPs

100Mbps, Sms

. (a) Network Setup

RED: max_th =
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max prb =

[ I ——
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(b) Scenario- 1
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(d) Scenario 3

J% 3. AlEdold ALzl ¥ AlEdolHd U ERT EEZX]
Fig. 3. The simulation Scenario and Network Setup, each scenario contains the fraffic condition of increasing

CBR-UDP and MM-UDP respectively.
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and MCDT with NS-2. Every simulation had the
exactly same settings except the queue management
mechanisms of network routers. The network
topology and traffic source schedulers are shown in
Figure 3. For traffic source, FTP, flow-controlled
multimedia traffic generator called MM_APP”
(tagged) and CBR (untagged) traffic generators were
used, where FTP used TCP NewReno and the others
used UDP as the underlying transport agent. All the
TCP agents were set to have a maximum congestion
window size of 20 and all packets in the network
were the same size of 1 Kbyte. The MM_APP traffic
generators, which react to congestion using 5 discrete
media scales with a "cut scale by half at frame loss,
up scale by one at RTT” flow control mechanism,
used 160, 170, 180, 190 and 200 Kbps for scale 0 to 4
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Fig. 4. The drop-rate comparison of 3 MCDT modes
in scenario 1.

transmission rates. The CBR sources were set to
generate packets at a rate of 1 Mhbps. Network
routers were assigned a 100-packet long physical
outbound queue. The RED parameters, which are
shown in Figure 3, were chosen from one of the sets
that are recommended by Floyd and Jacobson[g]. For
CBT, besides the RED parameters, the tagged and
untagged class thresholds(denoted as mmu_th and
udp_th) were set to 16 packets and 5 packets.

In the Scenario 1, we made a comparison between
3 modes of Figure 2, selected the best mode with
considering of QoS performance versus complexity,
and recommended it for scenario 2 and 3.

Figure 4 represent drop-rate and Figure 5 is
showing just MMU throughput comparison of MCDT
modes. The drop-rate and throughput performances
of 2 class, FTP-TCP class and CBR-UDP class are
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Fig. 5. The MMU throughput comparison of MCDT
modes in scenario 1.
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Fig. 6. Total Queuing delay(TCP, MMU, UDP)
comparison of CBT, RED, FIFO and MCDT in
the scenario 2.
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similar in all modes.

The mode B offers higher drop-rate and lower
throughput of MM-UDP class than other modes. We
can analogize reason of the duplicated "cut scale by
half” effects. So, we recognize that Mode B is not
good choice for MMU. Mode A is most effective
mode in a side of complexity. In mode C, we can use
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(868)

MCDT with few additional operations  (class
determination, counter increase, threshold test) in
contrast to RED. So the best mode is Mode A.

The queuing delay - comparison - of = AQM
algorithms is presented in Figure 6. The ’queuing
delay of MCDT is less than 40ms. It originates in
queue length controlled by dynamic - thresholds. The
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Fig. 8. The throughput comparison of CBT, RED, FIFO
and MCDT in scenario 3. ‘
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MCDT also offers low loss-rate and high throughput
of FTP-TCP class. The performance of CBR-UDP is
restricced by MCDT, but it is reasonable in our
policy. 4

Figure 7 and Figure 8 represent the performance
comparisons of drop-rate and throughput in the
scenario 3. Also we could observe the performances
provided by MCDT well kept the constraints as
Table 1, so total drop rate of proposed algorithm
MCDT is more higher than the others. But the
throughput performance of FTP-TCP kept high and
the drop-rate performance kept low.

V. Conclusion

The traditional Active Queue Management (AQM)
algorithms could not satisfy wide constraints of
applications. We introduced a new Active Queue
Management (AQM) algorithm, called Multiple-Class
Dynamic Thresholds (MCDT) as the extension of the
Dynamic Threshold (DT) scheme, and investigated
the characteristics in comparison with other AQM
algorithms. The simulation results show that the
MCDT provides higher throughput performance of
FTP-TCP, also, the MCDT kept lower delay and
drop-rate of MM-UDP than existing AQM
algorithms. On the whole, we could conclude that the
MCDT had QoS advantages of 2 classes satisfy
constraints of each class and these advantages are
obtained by fitting dynamic thresholds, especially
restricted threshold of CBR-UDP, it is a reasonable
result because we focused on QoS constraints of 2
classes, FTP-TCP and MM-UDP. And the MCDT
could provide higher QoS than established AQM
algorithms with a few additional operations compared
to RED and with similar to CBT.
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