Flux Loss and Neutron Diffraction Measurement Ag-sheathed Bi-2223 Tapes in terms of Flux Creep

  • Jang Mi-Hye (MSEL, United States Department of Commerce NIST)
  • 발행 : 2005.10.01

초록

Alternating current (AC) losses of two Bi-2223 ([Bi, Pb]: Sr: Ca: Cu: O = 2:2:2:3) tapes [(Tape I, un-twist-pitch) and the other with a twist-pitch of 10 mm (Tape II)] were measured and compared. These samples, produced by the powder-in-(Ag) tube (PIT) method, are multi-filamentary. Also, it's produced by non-twist and different twist pitch (8, 10, 13, 30, 50 and 70 mm). The critical current measurement was carried out under the environment in liquid Nitrogen and in zero-field by 4-probe method. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O)

키워드

참고문헌

  1. J. Yoo, J. Ko, H. Kim and H. Chung, IEEE, Trans. Appl. Supercond., 9, 2, 2163-2166,1999 https://doi.org/10.1109/77.784896
  2. Y. Yang, T. J. Hughes, and F. Duilitz, Physica C, 310, 147-153, 1998 https://doi.org/10.1016/S0921-4534(98)00451-1
  3. F. Darmann, R. Zhao, G. Mcoaughey, M. Apperley, and T. P. Bealeas, C. Frieul, IEEE, Trans. Appl. Supercond., 9,[2] 89-792,1994.
  4. W. Goldaker, H. Eokkelmann, M. Quilitz, B. Ullmann, IEEE Trans. Appl. Supercond., 7.,2,1670-1673,1997 https://doi.org/10.1109/77.620899
  5. J. R. Cave, A Fe'vriev, T. Verhaege, A. Lacaze, Y. Laumond, 'Reduction of AC losses in ultra-fine multi-filamentary Nb-Ti wires'. IEEE Trans. Of Magnetics, Vol. 25, pp. 1945-1948, 1989 https://doi.org/10.1109/20.92688
  6. M. Polak, I. Hlasnik, S. Fukui, N. Ikeda O, Tsukamoto. 'Self-field effect and current-voltage characteristics of AC superconductors,' Cryogenics, 34 315-324, 1994 https://doi.org/10.1016/0011-2275(94)90112-0
  7. W. Swan, J. Math. Phys. 9(1968)1308 https://doi.org/10.1063/1.1664715
  8. W. T. Norris, 'Calculation of hysteresis losses in hard superconductors carrying ac: isolated conductors and edges of thin sheets,' J. Phys. D 3 489 (1970)
  9. E. H. Brandt, M. Indenbom. Phys. Rev.B48 12893- 12906 (1993) https://doi.org/10.1103/PhysRevB.48.12893
  10. H. Schmit, M. Weber, and H.F. Braun, Physica C 246,177(1995)
  11. H. Schmit, M. Weber, and H.F. Braun, Physica C 256,393 (1996)
  12. Jaime, M. Nunez-Regueiro, M Alario-Franco, C. Chaillout , J. J. Chenavas, B. Souletie, J. L. Tholence, S. de Brion, P. Brion, P. Bordet, M. Marezio, J. Solid State Comm., 97 131(1997)
  13. D.D. Lawrie and J. P. Frank, J. Supercond. 8, 591 (1995)
  14. J. Joo, J. P. Sighn, T.Warsyanki.Grow and R. B. Poeppel, Applied Superconductivity, 2 6 401-410 (1994) https://doi.org/10.1016/0964-1807(94)90087-6
  15. M. Jaime, M. N. Regueiro, M A.A.Franco, C. Chaillout, J.J. Capponi, A. Salpice, J. L. Tholence, S. de Brion, P. Bordet, M. Marezio, J. Chenavas, B. Souletie, Solid State Comm. 97 131(1997).9 H. Schmit, M
  16. W. J. Carr, Jr. AC loss and Macroscopic theory of superconductors 86 copyright(1983)