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ON THE STABILITY OF A JENSEN TYPE
FUNCTIONAL EQUATION ON GROUPS

VALERIT A. FATZIEV AND PRASANNA K. SAHOO

ABSTRACT. In this paper we establish the stability of a Jensen type
functional equation, namely f(xy) — f(zy™') = 2f(y), on some
classes of groups. We prove that any group A can be embedded
into some group G such that the Jensen type functional equation is
stable on G. We also prove that the Jensen type functional equation
is stable on any metabelian group, GL(n,C), SL(n,C), and T'(n, C).

1. Introduction

Given an operator T and a solution class {u} with the property that
T(u) = 0, when does ||T(v)|| < ¢ for an £ > 0 imply that [ju —v|| < d(¢)
for some u and for some § > 07?7 This problem is called the stability
of the functional transformation [28]. It happened in 1940 that the
audience of the Mathematics Club of the University of Wisconsin had the
pleasure to listen to the talk of S.M. Ulam presenting a list of unsolved
problems. One of these problems can be considered as the starting point
of a new line of investigation: The stability problem. This problem can
be formulated as follows. If we replace a given functional equation by
a functional inequality, then under what conditions we can state that
the solutions of the inequality are close to the solutions of the equation.
For instance, given a group Gj, a metric group (Go,d) and a positive
number €. The Ulam question is: does there exist a 6 > 0 such that
if f: G1 — Ga satisfies d(f(zy), f(z)f(y)) < 6 for all z,y € Gy, then
a homomorphism 7 : G; — G exists with d(f(z),T(z)) < € for all
x,y € G17
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In the case of a positive answer to this problem, we say that the homo-
morphisms G3 — Gq are stable or that the Cauchy functional equation

fl@-y) = fz)* f(y)
is stable for the pair (G1, G2).

See S. M. Ulam[27] for a discussion of such problems, as well as D. H.
Hyers[11, 12], D. H. Hyers and S. M. Ulam[16, 17], J. Aczél and J.
Dhombres|1]. The first affirmative answer was given by D. H. Hyers[11]
in 1941. We present his result in theorem below.

THEOREM 1.1. (Hyers[11]) Let Ey and E; be Banach spaces. If f :
E, — E, satisfies the inequality

(1.1) I flz+y) - fle) - fly)ll <e

for some ¢ > 0 and for all x,y € Ey, then there exists a unique map
T : Ey — Es such that

(1.2) Tx+y)—T(x)—T(y) =0for all z,y € Ey
and
(1.3) | f(z) —T(x)|| < e for all z € Ey.

If we carefully examine the proof of Hyers’s theorem, the existence of
the additive function T uniformly approximating. f, we easily recognize
that the result remains true if we replace the additive group of the
Banach space E; by a commutative semigroup. So we can conclude that
the homomorphisms from an abelian semigroup into the additive group
of a Banach space are stable.

After Hyers’s result a great number of papers on the subject have
been published, generalizing Ulam’s problem and Hyers’s theorem in
various directions (see [10], [15]-[16] and [25]).

A function f: R — R is said to satisfy the Jensen’s functional equa-
tion if

T+y
(14 21(552) = 1) + 1)

for all 7,y € R. Setting 1(z +y) = u and 3(z — y) = v we can rewrite
the equation (1.4) as

2f(u) = flu+v) + flu—wv).

The latter is equivalent to

(1.5) flay) + flzy™!) = 2f(x)
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when the domain of the function is replaced by an arbitrary group. The
equation (1.5) was studied in the papers (2], [4] and [23]. The question
of stability of equation (1.5) was investigated in [18]-[21] and [26]. In all
these papers domain of f is either an abelian group or some of its subsets.
In [9], the present authors studied the stability of the equation (1.5) on
arbitrary groups.

In the paper [24], the stability of the following Jensen type functional
equation

(16) 25( 252 = &) - 1)

was considered. Here again f : R — R. Setting %—(w +y) = u and

1{(z — y) = v we can rewrite the equation (1.6) as

2f(v) = flu+v) = flu—w).

The latter is equivalent to

(1.7) flzy) — flzy™) =2f(y)

and can be considered over an arbitrary group.

In the paper [24], the stability of equation (1.7) over a real normed
space was considered. In the present paper we consider the stability of
the Jensen type functional equation (1.7) over an arbitrary group.

2. Auxiliary results

Suppose that G is an arbitrary group and E is an arbitrary real
Banach space.

DEFINITION 2.1. We will say that a function f : G — Eis a (G; E)-
Jensen type function if for any x,y € G we have

(2.1) flay) = flzy™) —2f(y) = 0.
We denote the set of all (G; E)-Jensen type functions by JT(G; E).

DEFINITION 2.2. We will say that a function f : G — E is a (G;E)-

quasijensen type function if there is a ¢ > 0 such that for any z,y € G
we have

(2.2) £ (zy) = flay™) = 2f W) < e
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It is clear that the set of (G; F)-quasijensen type functions is a real
linear space. Denote it by KJT'(G; E). From (2.2) we obtain

If(w) — fFv™h) =2/l < ¢,

therefore

(2.3) Ifw) + fFy Dl < e

Now letting y for = in (2.2), we get
IF(?) - F(1) = 2f @)l < e

Hence

(2.4) 1£(z%) = 2f ()] < c2,

where co = ¢+ || f(1)||. Again substitution of z = y? in (2.2) yields
1% = fv) —2f W) < ¢

which is

(2.5) IF@®) - 3f W)l < c.

Let ¢ be as in (2.2) and define the set C as follows: C = {¢p | m €
N}, where ¢; =0, c2 = c+ ||f(1)], and ¢m = ¢+ cm—2, f m > 2.

LemMA 2.3. Let f € KJT(G; E) such that
I fl2y) = fley™) —2f @) | < e
Then for any ¢ € G and any m € N the following relation holds:
(2.6) £ (™) — mf(2)|| < cm.

Proof. The proof is by induction on m. For m = 3 the lemma is
established. Suppose that for m the lemma has been already established
and let us verify it for m + 1. Letting z = y™ in (2.2), we have

IF ™) = fy™ ) = 2f W)l < e

By induction hypothesis, we have

1F @™ = (m = DF @) < em

and hence,

”f(ym+1) ~(m+DfW £ emi1 =c+em-1.

Now the lemma is proved.
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LEMMA 2.4. Let f € KJT(G;E). Foranym > 1, k€ Nandz € G
we have '

(2.7) 1F (™) = mF f(@)] < el +m 4 - +mEY)
and
(28) { L H@) ~ f@)] < en

Proof. The proof will be based on induction on k. If & = 1, then
(2.7) follows from (2.6). Suppose (2.7) is true for k and let us verify it
for k 4 1. Substituting ™ for z in (2.7) implies

@™ = mE f@™)]| < em(1+m+ -+ mFY),
Now using (2.6) we obtain
ImF f(@™) — mF f(2)]| < emm®
and hence

||f(1‘mk+1) _ mk+1f($)|| < Cm(l Fm4e+ mk)
The latter implies

1 k+1 1
@)~ S@)| < enll 4 mot -+ mb) o <

This completes the proof of the lemma.

From (2.8) it follows that for any z € G the set

1
{Wf(xmk) k€ N}
is bounded. Substituting z™" in place of z in (2.8), we obtain
1 mntk n
P @) = fE)| < e
Thus
1 mntk 1 m" Cm

From the latter, it follows that the sequence

k

{#f(mm ) keN}
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is a Cauchy sequence. Since the real Banach space E is complete, the
above sequence has a limit and we denote it by ¢y, (x). Thus

) 1 mk
pm(z) = lim —p f(2™).

From (2.8), it follows that
(2.9) lom(z) — f(@)| < em, VzEG.
LEMMA 2.5. Let f € KJT(G; E) such that
If(zy) — flmy™) —2f (W) < ¢ Va,yeG.
Then for ‘any m € N, we have p,, € KJT(G;E).
Proof. Indeed, by (2.9)
llom(zy) — em(zy™") — 20m (vl
= llem(zy) — f(zy) — om(zy™) + fl2y™!) — 20m(y) +2f(¥)
+ fzy) — flay™) - 2f W)l
< lem(zy) = f@y)ll + lom(zy™) = flay ™)

+2[lom(xz) = F@) + 1 f(zy) — flzy™) — 2f ()
< 4e¢p, + c.

This completes the proof of the lemma.

For any z € G we have the relation

(2.10) Om(@™) = mPom(x).
Indeed,

k ) 1 kot . mk b+t
em(@™) = Jm L (@) = fm T famt)

1
k 13 mPy _ k
=m phm f(@™) = mPom(z).

LEMMA 2.6. If f € KJT(G; E), then @3 = ¢y, for any m > 2.

Proof. By Lemma 2.5, we have ¢3, ¢, € KJT'(G; E). Hence the func-
tion

(@) = lim —ga(a™)

9\&) = k—oo mK $2

is well-defined and is a (G; E)—quasijensen type function.
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It is clear that g(z™") = m¥g(z) and g(z2") = 2%g(x) for any z € G
and any k € N. From (2.9), it follows that there are di,d> € Ry such
that for all x € G

(2.11) llpa(z) — glz)| <di and |lom(z) — g(x)|| < da.
Hence g = w2 and g = ¢, and we obtain s = @p,.
DEFINITION 2.7. By (G; E)-pseudojensen type function we will mean

a (G; F)-quasijensen type function f such that f(z") = nf(x) for any
x € G and any n € N.

The space of (G; E)-pseudojensen type function will be denoted by
PJT(G; E).

LEMMA 2.8. For any f € KJT(G; E), the function
~ 1
fl@) = lim Z f(a*)

is well-defined and is a (G; F)-pseudojensen function such that for any
reG

o~

1f(z) = f(2)]| < ca.
Proof. By Lemma, 2.5, ]?is a (G; E)-quasijensen type function. Now

by Lemma 2.6, we have f(azm) = pm (™) = mpp(z) = mf(z). Thus
em(x) = f(x) and hence po(z) = f(x) by Lemma 2.6. From equality
f= @2 we have [|f(z) — f(z)|| = llp2(z) - f(2)] < co.
REMARK 2.9. If f € PJT(G; E), then:
(1) f(z™™) = —nf(z) for any z € G and n € N;
(2) if y € G is an element of finite order then f(y) = 0;
(3) if f is a bounded function on G, then f = 0.

Proof. Suppose for some ¢ > 0 the following relation holds
I1f(ey) = flay™) = 2f W)l < e
From (2.3) it follows that
IF ") + Fl < e, ¥y € G, VR eN.

The last inequality is equivalent to k|| f(y) + f(y™ )| < cor ||f(y) +
fly™H|| € £ for all y € G and all k € N. The latter implies f(y™*) =
—f(y). Thus for any n € N, we have

fly™) = F(M ) = —fy") = —nf(y).
Hence, the assertion 1 is established.
Similarly we verify the assertions 2 and 3.
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We denote by B(G; E) the space of all bounded mappings on a group
G that take values in F.

THEOREM 2.10. For an arbitrary group G the following decomposi-
tion holds
KJT(G;E) = PJT(G; E) ® B(G; E).

Proof. It is clear that PJT(G; E) and B(G; E) are subspaces of KJT
(G;E), and PJT(G; E)N B(G; E) = {0}. Hence the subspace of KJT
(G; E) generated by PJT(G; E) and B(G; E) is their direct sum. That is
PJT(G; F)® B(G;E) C KJT(G; E). Let us verify that KJT(G; E) C
PJT(G; E) ® B(G; F). Indeed, if f € KJT(G; E), then by Lemma 2.8
we have f € PJT(G;E) and f — f € B(G; E).

DEeFINITION 2.11. Let E be a Banach space and G be a group. A
mapping f : G — E is said to be a (G; E)—quasiadditive mapping of a
group G if the set {f(zy) — f(z) — f(y)| z,y € G} is bounded.

DEFINITION 2.12. By a (G; E)—pseudoadditive mapping of a group G
we mean its (G; E)—quasiaddtive mapping f that satisfies f(z") = nf(x)
for all x € G and for all n € Z.

DEFINITION 2.13. A quasicharacter of a group G is a real-valued
function f on G such that the set {f(zy) — f(z) — f(y)| =,y € G} is
bounded.

DEFINITION 2.14. By a pseudocharacter of a group G we mean its
quasicharacter f that satisfies f(z") = nf(z) for all € G and all
n € Z.

The set of all (G; E)—quasiadditive mappings is a vector space (with
respect to the usual operations of addition of functions and their mul-
tiplication by numbers), which will be denoted by KAM(G; E). The
subspace of KAM(G; E) consisting of (G; E)-pseudoadditive mappings
will be denoted by PAM(G; E) and the subspace consisting of addi-
tive mappings from G to E will be denoted by Hom(G; E). We say
that a (G; E)-pseudoadditive mapping ¢ of the group G is nontrivial if
¢ ¢ Hom(G; E).

The space of quasicharacters will be denoted by K X(G), the space of
pseudocharacters will be denoted by PX(G), and the the space of real
additive characters on G will be denoted by X (G).

REMARK 2.15. If a group G has nontrivial pseudocharacter, then for
any Banach space E there is nontrivial (G; E)-pseudoadditive mapping.
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Proof. Let f be a nontrivial pseudocharacter of the group G and
e € FE such that e # 0. Consider a mapping ¢ : G — E such that
o(x) = f(x)-e. It easy to see that ¢ is nontrivial (G; E)-pseudoadditive
mapping. '

In [7]) and [8), some classes of groups having nontrivial pseudocharac-
ters are considered. '
THEOREM 2.16. For any group G the following relations hold:
(1) KAM(G;E) C KJT(G;E),PAM(G; E) C PJT(G; E),
and Hom(G; F) C JT(G; E);
(2) If f € PJT(G; E), and f(xy) = f(yx) for any z,y € G,
then f € PAM(G; E).
(3) If f € PJT(G; E), and for some a,b € G we have ab = ba,
then f(ab) = f(a) + f(b).

Proof. (1) Let f € KAM(G}; E) and ¢ > 0 such that || f(xy) — f(x) —
f()|| L cfor all z,y € G. Then we have

If(zy) = flay™) —2f (W)l
= |f(zy) - f(2) = fly) = flay™) + f(@) + fly~ )]
= [|f (ey) — f(x) = fly) — (Flay™) — f@@) = Fly™)
<\ f(zy) = f(@) = F@I + 1 (wy™) = f@) = Fly™)] < 2,
that is, KAM(G; E) C KJT(G; E). Hence, PAM(G; E) C PJT(G; E).

(2) Let f € PJT(G; E), ¢ > Osuch that || f(zy)— flzy ") —-2f(y)|| < ¢
and f(zy) = f(yx) for all z,y € G. Then we have

2[|f(zy) — f(x) = fFW)

= [|f(zy) = fley™) = 2f(v) + f(zy) — Flyz™) = 2f ()]

< f@@y) — flay™) = 2f W) + I (yz) — flya™) = 2f(2)]] < 2e.
Hence || f(zy) — f(z) — f(y)|| < cand f € PAM(G; E).

(3) Let A be the subgroup of G generated by elements a and b. From
the previous item we have PJT(A; E) = PAM(A; E). Then for some
¢ > 0 and for any n € N, we get

| f(ab) — f(a) = f(O) || = | £((ab)") — f(a™) = F(0") |
= | f(a"0") = f(a") = fF(B") || < c.
The latter is possible only if f(ab) — f(a) — f(b) = 0.
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COROLLARY 2.17. If G is an abelian group, then PJT(G;E) =
Hom(G; E).

3. Stability

Suppose that G is a group and F is a real Banach space.

DEFINITION 3.1. We shall say that the equation (2.1) is stable for
the pair (G; E) if for any f : G — E satisfying functional inequality

If(zy) — flzy™") = 2f(y)| <c Vz,y€G

for some c > 0 there is a solution j of the functional equation (2.1) such
that the function j(z) — f(x) belongs to B(G; E).

It is clear that the equation (2.1) is stable on G if and only if PJT(G;
E) = JT(G; E). From Corollary 2.17 it follows that the equation (2.1)
is stable on any abelian group. We will say that a (G; E)-pseudojensen
function f is nontrivial if f ¢ JT(G; E).

THEOREM 3.2. Let E;, FEy be a Banach spaces over reals. Then the
equation (2.1) is stable for the pair (G; Ey) if and only if it is stable for
the pair (G; E»).

Proof. Let E be a Banach space and R be the set of reals. Suppose
that the equation (2.1) is stable for the pair (G; E). Suppose that (2.1)
is not stable for the pair (G,R), then there is a nontrivial real-valued
pseudojensen type function f on G. Now let e € E and || = 1.
Consider the function ¢ : G — E given by the formula ¢(z) = f(z) - e.
It is clear that ¢ is a nontrivial pseudojensen type E-valued function,
and we obtain a contradiction.

Now suppose that the equation (2.1) is stable for the pair (G, R), that
is, PJT(G,R) = JT(G,R). Denote by E* the space of linear bounded
functionals on E endowed by functional norm topology. It is clear that
for any ¢ € PJT(G, E) and any A € E* the function A o 9 belongs to
the space PJT(G,R). Indeed, for some ¢ > 0 and any z,y € G we have

I (zy) — Plzy™) — 29 (y)|| < c. Hence

Ao p(zy) — Aogp(zy™) — Ao 20(y)| = AW(zy) — P(ay™") — 2 (y))|
< cfjAll

Obviously, Aoy(z™) = nAot(z) for any z € G and for any n € N. Hence

the function X o 1) belongs to the space PJT(G,R). Let f : G — H be
a nontrivial pseudojensen type mapping. Then there are z,y € G such
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that f(zy) — f(zy~') — 2f(y) # 0. Hahn-Banach Theorem implies that
there is a £ € E* such that £(f(zy) — f(zy™!) — 2f(y)) # 0, and we see
that £ o f is a nontrivial pseudojensen type real-valued function on G.
This contradiction proves the theorem.

In what follows the space KJT(G,R) will be denoted by KJT(G),
the space PJT(G,R) will be denoted by PJT(G), the space JT(G,R)
will be denoted by JT(G).

COROLLARY 3.3. The equation (2.1) over a group G is stable if and
only if PJT(G) = JT(G).

Due to the previous theorem we may simply say that the equa-
tion (2.1) is stable or not stable.

REMARK 3.4. For any group G and any Banach space F the following
relation PAM (G; E) N JT(G; E) = Hom(G; E) holds.

Proof. 1t is clear that Hom(G; E) C PAM(G; E)NJT(G; E).

Lemma 1 from [6] asserts that if f € PAM(G;E), then for any
x,y € G we have f(xy) = f(yx).

Suppose that f € PAM(G; E)NJT(G; E). Since f € JT(G; E), the
map [ satisfies
(3.1) flay) = flzy™) = 2f(y) = 0.
Interchanging = with y in (3.1), we have

flyx) = flyz™) = 2f(x) = 0.
Taking into account the relations
flyz) = f(ay) and f(yz™") = —flzy™"),

we get
(32) fzy) + fley™) - 2f(z) = 0.
Adding (3.1) and (3.2), we obtain 2f(zy) — 2f(x) — 2f(y) = 0. Hence
f(zy) = f(z) + f(y) and f € Hom(G; E), so
(3.3) PAM(G; EYNJT(G; E) = Hom(G}; E).

REMARK 3.5. If a group G has nontrivial pseudocharacter, then the
equation (2.1) is not stable on G.

Proof. Let ¢ be a nontrivial pseudocharacter of G. Suppose that
there is j € JT(G) such that the function ¢ — j is bounded. Then there
is a ¢ > 0 such that |¢(x) — j(x)|] < ¢ for any = € G. Hence for any
n € N we have ¢ > |p(z™) — j(z™)| = njp(z) — j(z)| and we see that
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the latter is possible if p(z) = j(z). So, ¢ € PX(G) N JT(G). Hence,
¢ € X(G) and we come to a contradiction with the assumption about
©.

Let G be an arbitrary group. For a,b,c € G, we set [a,b] = a~ b~ 1ab
and [a, b, c] = [[a, b], c].

DEFINITION 3.6. We shall say that G is metabelian if for any z,y, 2z €
G we have [[z,y],2] = 1.

It is clear that if [x,y] = 1, then [[z,y], 2] = 1, and hence any abelian
group is metabelian.

Our next goal is to proof a stability theorem for any metabelian
group. Consider the group H over two generators a, b and the following
defining relations:

[b,ala = alb,a], blb,a] = [b,a]b.

If we set ¢ = [b,a] we get the following representation of H in terms of
generators and defining relations:

(3.4) H =<a,b,c|c=[bya], [c,a] =][c,b]=1>.

It is well known that each element of H can be uniquely represented as

g = a™b"c¥, where m,n, k € Z. The mapping
1 n k
g=amb“c’“—+[0 1 m}
0 0 1

is an isomorphism between H and UT(3,Z).

LEMMA 3.7. Let f € PJT(H) and f(c) =0, then f € X(H).

Proof. Let z = a™b"c* and y = a™b™ %t be two elements from H,
then from the representation (3.4) it follows

m+my pntng cmntktk m+ma pntng mny +k+k1
, .

Ty =a Yyr =a

Hence by Theorem 2.16 we have
f(.fL‘y) — f(am+m1bn+n1) € f(cm1n+k+k:1) — f(am+m1bn+n1),

f(ym) — f(am+m1 bn+n1) + f(cmn1+k+k1) — f(am+m1 b’n+n1)'
Thus f(zy) = f(yz) for any z,y € H. By Theorem 2.16 we obtain that
f € PX(H). From the representation (3.4) it follows that the subgroup
of H generated by element ¢ is the commutator subgroup of H. Lemma
2 from [6] establishes that if G is a group and ¢ € PX(G) such that
¢|e = 0, then ¢ € X(G). Here G’ is the commutator subgroup of G.
Hence, f € X(H).
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LEMMA 3.8. Let f € PJT(H), then f(c) = 0.
Proof. Let = a™b"cF, y = a™b™ | then
zy ™t = ambF TRy g™ = Moo gmm —munth—ky
Hence by Theorem 2.16, we obtain
flay) = fley™) = 2f(y)

— f(am—l—ml bn+n1 Cnml +k+k1)

— flammmagnm g mmmth—ky) g f (g i)
= fla™TmTm) 4 f(cmmthh)
— flamTmpnT) — f(mamnmatheky
~2f(a™b™) - 2f(cM)
= fa™TBII) — f(a™TTT™M) — 2f(a™b™)
4 f(cnm1+k+k1) _ f(cmlnl—nm1+k—k1) _ 2f(ck1)
= f(@™TYM) = f(@™ T T™) — 2f(a™6™M)
+ f(cnm1+k‘+k1—m1n1+nm1~—k+k1—2k1)
= f(a™TMY) — (@M — 2f(a™16™)
+ f(ePnmimman,)

Hence the set
M = {f(am+m1 bn+n1) _ f(am—ml bn—nl) _ 2f(am1 bnl)
+ f(c2”m1_m1”1) m,n,k,my,ny € Z}

is bounded. Let us set ny = n = 2[, then for some A, we have

(3-5) (@™ Fmpm) — fa™t™) — 2f(0")] < A,

(3.6) |f(@™b") — f(a™) — 2f (b)) < A.

Taking into account these two relations, we see that the set

M1 — {f(am+m1 bn+n1 ) _ f(am—ml bn—n1 )

—2f(a™b™) |m,n, k,mi,n1 € Z}
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is bounded. Now from boundedness of the sets M and M; it follows
that the set

{stenmmmy = g | nm € 2}
is bounded too. But it is possible only if f(c) = 0.

LemMMA 3.9. PJT(H) = X(H).

Proof. The proof follows from Lemma 3.7 and Lemma 3.8.
THEOREM 3.10. The equation (2.1) is stable on any metabelian group.

Proof. Let G be a metabelian group and f € PJT(G). If z,y € G,
then there is a homomorphism 7 of H into G such that 7(a) = = and
7(b) = y. Obviously, the function f*(g) = f(7(g)) belongs to PJT(H).

Now if f(zy) — f(zy~") —2f(y) # 0, then f*(ab) - f*(ab1) = 2/*(b) # 0
and we arrive at a contradiction with the previous Lemma 3.9. Thus
f € JT(G) and PJT(G) = JT(G). Therefore the equation (2.1) is
stable on G.

4. Some classic groups GL(n,C),SL(n,C),T(n,C)

For any group G denote by G? its subset {22 | z € G}.

THEOREM 4.1. Let G be a group such that G = G?, then PJT(G) =
PX(G).

Proof. Let f € PJT(G). For some ¢ > 0 and any z,y € G, we have

1f(zy?) — flzyy™) — 2f(y)| < c,
hence

(4.1) f(zy?) = f(z) = 2f ()| = | f(@y?) — f(z) - f(W°) < e

Let z,z be an arbitrary elements from G, then for some y € G we
have z = y2. Now from (4.1) it follows |f(zz) — f(x) — f(2)| = | f(zy?) —
f(z) — f(¥?®)| < c. Hence f € PX(G).

THEOREM 4.2. Let G denote the group GL(n,C),SL(n,C) orT'(n,C).
Then the equation (2.1) is stable over G.

Proof. Let G be one of the groups GL(n,C),SL(n,C) or T(n,C).
For any z € G there is y € G such that y?> = x. By Theorem 4.1, we
have PJT(G) = PX(G). Let us show that PX(G) = X(G). The group
T(n, C) is solvable, hence by Theorem 1 from [6] we have PJT(T(n,C)) =
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Proof. Let G be one of the groups GL(n,C),SL(n,C) or T(n,C).
For any © € G there is y € G such that 3> = z. By Theorem 4.1, we
have PJT(G) = PX(G). Let us show that PX(G) = X(G). The group
T(n, C) is solvable, hence by Theorem 1 from [6] we have PJT(T(n,C)) =
PX(T(n,C)) = X(T(n,C)). Consider the group SL(n,C). It is well
known that the group SL(n,C) is generated by the set of elementary
matrices, and that every elementary matrix is conjugate with it’s in-
verse. Hence, if f € PX(SL(n,C)) and z an elementary matrix, then
f(x) = 0. Tt is well known that for any n € N there exists k(n) such
that every element from SL(n, C) can be represented as product no more
then k(n) elementary matrices.

If |f(zy) — f(x) — f(y)| < cforallz,y € SL(n,C), then for any
g € SL(n,C) we have |f(g)] < k(n)c, and we see that f is a bounded
function of SL(n,C). Therefore f = 0 and PX(SL(n,C)) = 0. It is well
known that SL(n,C) is commutator subgroup of GL(n,C). By Lemma 2
from [6] it follows that if a pseudocharacter of a group G is zero on its
commutator subgroup G’ then this pseudocharacter is a character of G.
Hence, we get PX(GL(n,C)) = X(GL(n,C)). So in any cases we have
PX(G) = X(G) and the equation (2.1) is stable over G.

REMARK 4.3. Note that the Jensen type functional equation (2.1)
is not stable on the group G if G is either GL(2,Z) or SL(2,Z). This
is due to the fact that SL(2,Z) has a nontrivial pseudocharacter (see
Remark 3.5). Thus, in general, the equation (2.1) is not stable on groups
GL(n,Z) and SL(n,Z).

5. The theorem of embedding

DEFINITION 5.1. Let G be a group, f € PJT(G; E), and b an auto-
morphism of G. We will say that f is invariant relative to b if for any
z € G the relation f(z?) = f(z) holds. If the latter relation is valid for
any b € B, where B is a group of automorphism of G, then we will say
that f is invariant relative to B.

From now on, the set of pseudojensen type functions on G invariant
relative to B will be denoted by PJT(G, B; E) and if E = R, then the
space PJT(G, B; R) will be denoted PJT (G, B).

THEOREM 5.2. Let H and A be a groups such that A is an abelian
group and H = H?, A = A%, Let Q = A- H be a semidirect product
of groups A and H, A acts by automorphism on H, and H <Q. Then
PJT(Q) = PX(Q)=X(A)@ PX(H,A) and X(Q) = X(A)d X (H, A).
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Proof. Suppose that f € PJT(Q) and for some ¢ > 0 and for any
z,y € (), we have

(5.1) |f(zy) — flzy™) —2f (W) < c.

We can assume that f | 4 = 0. Indeed, the restriction of f to A is
an element of the space PJT(A). Hence by Corollary 2.17 it is an
element of the space X(A). Let ¢ = f o7, where 7 : Q — A a natural
epimorphism with kerm = H. It is clear ¢ € X(Q). Hence in order
to show that f € PX(Q) it is necessary and sufficient to show that
m=f—¢ € PX(Q). But it is clear that 7r|A = 0. So we can assume

flAEO.
Let a,b€ A, u,v € H. Then we have

| f(uaa) — f(uaa™') — 2f(a)| < c.
Hence
|f(ua?) — f(u)| <e.
Since A = A? we get that for any a € A the following relation
|f(ua) — f(u)| <e,
or
|f(au®) — f(u)| < e.
It follows that
(5.2) |f(aw) - f(u* ™) < e

For any b € A and v € H, we have 2f(bv) = f((bv)?) = f(b*v ).
Taking into account (5.2), we get

FB*00) = F™ W) < e
or

[2f(b0) = FP 0T < e
From the latter inequality and (5.2), we get

[2(0") = F(" )| < 3e.
Now by Theorem 4.1, we obtain
(5.3) 27 (") = FOT) = (T < de

or

(5.4) F@) = fPT)] < e
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Let us put d = ! and w = v%. Now from (5.4) it follows that for
any d € A and any w € H the following relation
(5.5) |f(w) = fw?)] < 4e
holds. Changing w by w™ in the last relation we get
|[f(w™) = f((w™)P)] < 4e.
Hence
[f(w) = fw)| = 3 |F (@) = fF((w™))] < 34e.
And we see that for any d € A and any w € H the following relation

(5.6) flw) = f(w?)
holds. Now from (5.2), we get
(5.7) | flau) — f(u) | <c.

Let ¢ = f\H, then from the relation (5.6) we get Pt =1, Ory €
PX(H,A).

Now let us show that f € PX(Q). Let z = au and y = bv. Taking
into account (5.6) and (5.7) we have

[f(zy) = f(2) = F(W)] = |fabuv) — f(au) — f(bv)]
= |f(abu®v) — f(u’v) — f(aw) + f(u) — f(bv)
+ f(v) + fuv) = f(u) = f(v)]
< |f(abu®v) — f(u’v)| + | f(au) + f(u)]
+ (o) + f(0)] + [ f(uP0) = f(u) = F(v)]
< 4e.
So, f € PX(Q) and PJT(Q) = PX(Q). Now by Theorem 2 from [5]

we obtain PX(Q) = X(A) ® PX(H,A). The latter relation implies
X(Q)=X(A) & X(H,A).

Let A and B be an arbitrary groups. For each b € B denote by A(b)
a group that is isomorphic to A under isomorphism a — a(b). Denote
by D = AB) = [I;c5 A(b) the direct product of groups A(b). It is clear
that if a1(b1)az(bs) - - - ag(by) is an element of D, then for any b € B, the
mapping

b* - ai (bl)ag(bg) s ak(bk) - al(blb)ag(bzb) v ak(bkb)

is an automorphism of D and b — b* is an embedding of B into Aut D.
Hence, we can form a semidirect product G = B - D. This group is
called the wreath product of the groups A and B, and will be denoted
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by G = Al B. We will identify the group A with subgroup A(1) of D,
where 1 € B. Hence, we can assume that A is a subgroup of D.

LEMMA 5.3. Any group G can be embedded into a group H such that
H?2=H.

Proof. The group H can be constructed by using amalgamated free
product (see [22]) or by using wreath product (see [3]).

THEOREM 5.4. Let G be an arbitrary group. Then G can be embed-
ded into a group Q such that PJT(Q) = JT(Q) = X(Q). Hence the
equation (2.1) stable over Q.

Proof. Let us fix an arbitrary infinite Abelian group A such that
A = A2, Let us choose a group H satisfying Lemma 5.3.

Let us verify that the equation (2.1) is stable on @ = HA. Denote by
D the subgroup of @ generated by H(b), b € A. The group D satisfies
condition D2 = D. By Thedrem 5.2 we have PJT(Q) = PX(Q) =
X(A)® PX(D,A).

Let us verify that PX (D, A) = X (D, A). Suppose that f € PX(D, A)
Let b; for ¢ € N be distinct elements from A. Let a,a € H. Consider
elements ug = a(b1)a(bs) - --a(bg) and vp = a(by)a(bs)---a(by). Then
by Corollary 2.17, for any k € N, we have

| f(ukv) — fug) — fug)| =

k
> [f(aa(ts)) - f(a(ts)) — f(a(bi))]‘ :
i=1
By formula (5.6), we have f(d(b;)) = f(d%(1)) = f(d(1)) for any d € A

and for any ¢ € N. Let r = f(ac) — f(a) — f(a). Hence r = f(aa(b;)) —
f(a(b;)) — f(a(b;)) for any i € N. Therefore

k
|f (ukvr) ~ f(uk) = Flor)l = |D_[f(aa(B:) = flalbs)) - f(a(bi))]‘-
i=1

= |k[f(aa(1)) — f(a(1)) — f(a(1))]].
=k|r|-

Further we have
| f(urvr) — f(ur) — flor)| < c.

Hence

klrl <e
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and
1
Ir] < ¢ vk € N.

The latter is possible only if 7 = 0. Thus f(ax) — f(a) — f(e) = 0 and
f € X(D,A). Hence PJT(Q) = X(A) ® X(D,A). And we see that
PJT(Q) = X(Q)- So the equation is stable (2.1) on the group Q.
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