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ON THE INCREMENTS OF A
d-DIMENSIONAL GAUSSIAN PROCESS

ZHENGYAN LIN! AND Kyo-SHIN HWANG?2

ABSTRACT. In this paper we establish some results on the incre-
ments of a d-dimensional Gaussian process with the usual Euclidean
norm. In particular we obtain the law of iterated logarithm and
the Book-Shore type theorem for the increments of a d-dimensional
Gaussian process, via estimating upper bounds and lower bounds
of large deviation probabilities on the suprema of the d-dimensional
Gaussian process.

1. Introduction and results

Limit theory on the increments of some kinds of stochastic processes,
such as the Wiener process, fractional Brownian motions, multifractional
Brownian motions, Ornstein-Ule-nbeck processes, {2-valued Ornstein-
Ulenbeck processes, [P-valued Gaussian processes, [*°-valued Gaussian
processes and related processes, has been investigated in various direc-
tion by many authors, for instance, Choi[5], Choi and Koéno[6], Cséki
et al.[7, 8], Csorgd and Révész[10], Kono[14], Csorgd, Lin and Shao[9],
Cso6rgb and Shao[11], Lin[15], Lin and Lu[17], Lin and Qin[18], Lu[19],
Shao[23], Zhang([24, 25].

Furthermore, the law of iterated logarithm and the Book-Shore type
theorem [4] for the increments of Gaussian processes have been studied
by Arcones[l], He and Chen[13], Monrad and Rootzen[20], Révész[22]
and Zhang[24, 25].

In the paper we obtain some results on the increments of a d-dimen-
sional Gaussian process with the usual Euclidean norm || - ||. First of
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all we establish the law of iterated logarithm and the Book-Shore type
theorem for the increments of a d-dimensional Gaussian process, via es-
timating upper bounds and lower bounds of large deviation probabilities
on the suprema of the Gaussian process.

Let {X;(t), 0 <t < o0},i=1,---,d, be real-valued continuous and
centered independent Gaussian processes with X;(0) = 0 and E{X;(t) —
X;(s)}? = o2(|t — s|), where 0;(t) are positive nondecreasing continuous
and regularly varying functions of ¢ > 0 with exponents a;(0 < a; < 1)
at 0 and co. Hence o;(z)/z is non-increasing for large z. Let {X%(t) =
(X1(8),---,X4(t)),0 <t < oo} be a d-dimensional Gaussian process
with the norm || - ||. For 0 < T < o0, let ar be a positive continuous
function of T with 0 < ar < T'. Denote

1/2
Blar,T) = {2(log(T/ar) + loglog T) } 2
o(d,t) = ggsxdoi(t),
where log x = In(max{z, 1}).
The following Theorem 1.1 was proved by Lin et. al.[16].
THEOREM 1.1. We have

X(t — Xt
limsup sup  sup I X2 + 5) @l <1 as.
T—oo 0<t<T 0<s<ar ©0(d,ar) Blar,T)
Our main results are as follows:
THEOREM 1.2. Assume that o2(z) are twice differentiable for x > 0
which satisfies
(i) both ar and T'/ar are nondecreasing,;
2 2 2 2 2
(i) |52 | < e 22 and |52 | < %, i=1, d
for positive constants ¢; and c3. Then we have
XHT) - XHT —
oy 1XT) = X4(T — an)|
T-e  0(d,ar)B(ar,T)

THEOREM 1.3. Suppose that

. log(T/ar)
— 7 <r < oo.
(i) Tll_l,%o loglogT 0srsoo

>1 a.s.

Then

XUt XU (Y

liminf sup sup s

T—oo g<t<T0<s<ar 0(d,ar)B(ar,T)
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THEOREM 1.4. Assume that ar satisfies condition (iii) and there ex-
2 2 2
ol g\ .

d;'g )l<c2 lx(z)’ t=1-.d.

. .. d
ists a positive constant cs such that '

Then we have

liminf su
T—oo ogth o(d,ar) Blar,T)

1X9t + ap) — X4B)| _ ( r \M2
- Z(1+r) a-s

Combining Theorems 1.1 and 1.2, we obtain the following limsup
value:

COROLLARY 1.1. Under the assumptions of Theorem 1.2, we have

limsup sup sup ))Xd(t +5) — Xd(t)”
Tooo 0<t<T 0<s<ay O(d, ar) Blar,T)

|X4T) = XUT—ar)| |

= limsu
Tone’ o(d,ar)Blar, T)

If, furthermore, ar = T, then we have the law of iterated logarithm for
a d-dimensional Gaussian process:

lim sup IXD)) =1
T—oo 0(d,T) /2loglogT

a.s.

From Theorems 1.3 and 1.4, we obtain the following liminf value:

COROLLARY 1.2. Under the assumptions of Theorem 1.4, we have

hm 1nf Sup sup ||Xd(t + 8) B Xd(t)“
T—oo g<t<T 0<s<ar 0(d,ar) B(ar,T)
o X%t + ar) — X4t ro\1/2
= liminf su _ as.
T~ oigr  o(d,ar) Blor,T) <1 + 7“)

EXAMPLE. Let () =%, 0 < a; < 1 fori=1,--,d, then X;(¢t)
is a fractional Brownian motion. Hence X4(t) = (X1(t), -+, Xa(t))
is d-dimensional fractional Brownian motion, obviously, which satisfies
condition (ii).
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2. Proofs

We shall accomplish the proofs of our theorems through several lem-
mas. The following lemmas 2.1~2.4 are essential for the proof of The-
orem 1.2. Lemma 2.1 is a well-known extension of the second Borel-
Cantelli lemma:

LEMMA 2.1. Let {Ag,k > 1} be a sequence of events. If
(2) Y P(Ap) = o0,
k=1

<0

— Y

() limint 3~ A0 A) = P(A;) P(d)

N n 2
nee 1<j<k<n (Zj:l P(Aj))
then P(A,, i.0.)=1.

The proof of Lemma 2.1 can be found, for example, in Theorem 6.4 in
Billingsley(3]. The following Lemma 2.2 is a generalization of Slepian’s
lemma(cf. e.g. Berman|2]).

LEMMA 2.2. Let {X;,57=1,2,--- ,n} be centered stationary Gauss-

ian random variables with EX;X; = r;; and 1y = 1. Let IJ!' =
[c,00), and I;! = (—o0,¢). Denote by Fj the event {X; € I}} for
¢j € (—o00,00),j = 1,2,--- ,n, where ¢; is either +1 or —1. Let

K c{1,2,---,n} and {K;,l =1,2,--- ,s} is a partition of K, then

P ﬂFj —HP ﬂFj < Z Z erijlfﬁ(ciacj;r:j)
=1

JEK JEK; 1<l<m<s i€K; j€EKm

where ¢(x,y; ) is the standard bivariate normal density with correlation
r and r;; is a number between 0 and ry;.

LEMMA 2.3. Assume that a function o%(x) satisfies that |d?c? () /da?|
< co0?(x)/2? for some c3 > 0 and 02(x)/x? is non-increasing. Let P,
@ and R be positive real numbers. Then

[ aeen - [ aet)

R Q-P

< czg@(—g_;—g)P(R+P—Q).
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Proof. We have

/mpafu»—/Q d(o*(2))

R Q-P

Q
</ o*(x—Q+ R+ P)—0o*(z))|dz
Q-P diE
Q z—Q+R+4+P d2
< / / ( )‘ dydx
Q-P
T— Q+R+P
< / / (y) dydz
a*(Q—-P)
<e¢ P(R+ P — O
(Q 2E ( Q).
LEMMA 2.4. Assume that fori=1,--- ,d, af(:r) is differentiable for

for a positive constant ¢y. Then

2 2
doite)) ., 7e)
T

x > 0 and satisfies ‘ L
dz

we have

d
lim sup |1 XD >1 as.

T—oo 0(d,T)\/2loglogT —
Proof. Take iy = io(T") such that ¢;,(T) = o(d, T). Clearly,

IXUT)I/o(d, T) = | Xio(T)| /04 (T).
Using the inequality

1 1 1 2 11 2
— (2 ez /2 - T2
m(x x3)e <1-®(x) < \/Q—wme ,
where ®(z) = P{N(0,1) < z}, we have
X4T —(1—¢)l T
P{D, =iy » Lol ooghey
(d,T) 2V2r  \/2(1 —¢)loglogT

> ¢ (logT) 7%/

for large T, where c3 > 0 is a constant. Let T = #* with § > 1. Then

) d 0
Z P {——“id(?))n > \/2(1 —€) loglogT} > c3 Z (long)_(l_E/z)

k=1 k=1
= Q.
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Hence, in order to prove Lemma 2.4, we need to show that (b) of Lemma
2.1 holds. FOI‘j < k, if io(Tj) 75 io(Tk), E{Xio(Tj)(I})XiO(Tk)(Tk)} = (.
If io(Ty) = io(Tk)(=: io), noting that o2 (z)/z? is non-increasing for
large x, we have

B {Xo(T5)Xiy (T1)} = 5 (63, (T3) + 0% (T4) — 03, (Tk ~ T5)
<3 (@ + (1- B )
<3 (2@ + Eot )
and
o o)

lo'io (TJ) ﬂ Tig (Tk)
-2 Oig (Tk) Tk Uio(I’j)
1 (5)% Liy(Ty) | (5)1““0 Lio (Tx)
— 2\T; Lio (Tk) Ty Lio (TJ)
1 . ) ’ .
< 59—040(’9—7) + 0—(1_0‘0)(1‘7_3) = 1Nk

for large j, where L; (-) is a slowly varying function and 0 < ap <
min{o;,i=1,--- ,d}, max{a;,i = 1,--- ,d} < af < 1, and the following
fact on a slowly varying function L(x) at the infinite has been used: for
any € > 0

(2) (g)e%—ao as§—>0 and x — o00.

We can now prove that (b) of Lemma 2.1 holds. Set

Yo(Th) = Xio(Tk) /04y (Tk), k= +/2(1 — €) loglog T,

rik = EYo(Tj))Yo(Tk) and Ay = {Yo(T:) > v/2(1 — ¢) loglog Ty }-
By Lemma 2.2 we have, for some fixed m,

> (P(AAL) — P(4;)P(4x))

m<j<k<n

(3) n—1 n

< Z Z Iriuld(z;, 2r;r58)

j=mk=3+1
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(Yo y oy bl
j=m \k=j+1  k=j+&+1  k=gi41) 2my /1 =152

3+ xf — 2T mery
X exp q —
P 2(1—r3.2)

=L+ L+,

where &; = [ log, j] with @ = min(ag,1 — af) and £ =(2)An
Note that for j < k,

__w?+x%—2mjmkr _ ﬁx_? _ (mk —q;jr)Q < _CU—? B (1—7‘)37]2
2(1 — r?) 2 2(1—7r2) = 2 2(1+7)

For any 0 < ¢ < 1, the first sum

n—1 .7+§] 2 /r. 2
L < E E —25/2 oy vl
' 2 1~7«2 P T2

j=mk=j+1

n—1

2(1 — ¢)loglog 67
< -
Z Qw\/l——gj eXp{ M 2

— T a29 2 —M(1—¢) .
< e %/2 2 (jlogf lo
_Jz A — (310g0) 8

for large n, where M = 1—+f and 7 is the maximum of the covariances
|7jk| for j,k =1,--- 'n. We have 7 < 1 by noting (1) and taking 6 to be

large enough. Note that
x? + 2% — 2xjapryy - m? + z? — 2x;TE7 7y,
21—r3% T 2

Choosing m to be large enough, we have

n—1 E}
I, < Z ‘rjk‘ e—(m?—l—axi)/Q

<y oy v {15572}
j=mk=j+&+1 2m\ /1 =17
(5) ’ 7
n—1 5; 1
I

‘ ‘ ™
Jj=mk=j+&;+1
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£/ w— 2
< Z ,
<: (;P(AJ)) :
where we have used the fact that for k —j > &; and k < 2j
Irsel < e = lg—ao(k—j> + g~ (1—ep) (k1)

< ;]—Zao/a + j21-ap)/a”
3,

<2

< 2.7

and
TikTiTh < NjkT;iTh
< 3j“2\/(log log 69)(log log 6%)
< 35 ?log(2jlogf) — 0 as j — oo.

For I3 we have the same bound by noting that for k —j > &; and k > 25
Tie% Tk < (0_"‘°k/2 + 20_(1""6)’“/2) log(klogd) — 0 as k — oo.
Thus, by combining these results, for any € > 0 there is an m such that

n n 2
S (P(434%) - P(45) P(41)) < (3 P(45) + (Do P(An) ),
m<j<k<n j=1 j=1

which implies (b) of Lemma 2.1. Therefore Lemma 2.4 is proved. [

Proof of Theorem 1.2. Let ig = ip(ar) and
Xio(T) — Xy (T — ar)

Zo(T,ar) = e lar)
Then, for any 0 < € < 1, we have
d (T
| XHT) = XUT - o) > (1—¢)(2(log(T/ar) + loglogT))l/z}
d aT)
{ (T,ar)| > (1 —€)(2(log(T/ar) +10glogT))l/2}
1 exp{—(1-¢)%(log(T/ar) +loglogT)}

ST _s)(log(:r/aT)+loglogT)}” :

> (rigr)
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for T large. Let Ty = 1 and define Ty by Txs1 — ar,,, = Tx if p < 1,
Ty, = 0% if p = 1, where limy_,o ar/T = p and 6 > 1. In the case of
p = 1, then necessarily ar = T and | X(T) — X4(T — ar)|| = [| X4(T)]|.
By Lemma 2.4, the conclusion of the theorem holds. Consider the case
of p < 1. Set

1/2
By = {ZO(Tk,aTk) > (2(1 — &) (log(Tx/ar,) + loglong)> }, k> 2,

then )
oo o0 —&
ar,
S P(BY>Y (—> ~ .
k=2 =5 \ Tk log T

Hence, in order to prove our result, we need to show that (b) of Lemma
2.1 holds. Without loss of generality, assume that a; < 1. By condition
(i) and the definition of Ty, we have Tx(1 — a1) < Tx—1,07, < (1 —
k—1
a1) lar,_, and Z ar,, > (k—j—1)ar,,,. For k > j+2,ifig(ar,) #
m=j+1
io(aTk), E{Zo(Tj, a,T].)Zo(Tk, aTk)} =0.1If io(aTj) = io(aTk)(:: ’io), then
by Lemma 2.3, we have

o« = E{Zo(T}, ar,) Zo(Tk, ar, )}

= ! 2 Y 42 o
B 20i0 (aTj )0-7;0 (aTk ) E{o-lo (Tk Tj—l) 0-7;0 (Tk 1—})

= (02 (T = Ty-1) = 0%, (Thoa = T3)) §

Te—Tj—1 ) Te 1—Tj-1 5
= do; (x) —/ do; ()
20-7:0 (O‘Tj 0-7:0 (aTk ) /’T‘k —Tj ‘0 Tk_ 1 —Tj 0

> ):n:j AT, > ’:n;lj ATy, 9
/ do?o (x) — / do;, (z)

2010 (a'Tj Tig (G’Tk) an:j-kl arT,, an_:lj.,_l art,,
k—1
< c2 a’Tj G‘Tk 07;20 ( Zm:]-’-l aTm)
= Toilarny)og,(ary,) (an_:ljﬂ aTm)2

Note that for large k&,

k—1 1-ay k-1
ar, Uio(zm=j+1 ar,,) o ( ar, ° Lio(zm=j+1 ar,,)
>

o3 (a1, ) an_zl j+1 0T, }:n_zlj+1 ar,, Li, (ar.)

S (1 — al)_(l‘o‘O).
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We have
0 (1 - a’l)_(l_QO)aTj Tip ((k —-J- l)aTj+1)
Tk < C2 .
Ty (aTj) (k —J] - 1)aTj+1
aT; Tig ((1 — al)_l(k -7~ 1)aTj)
<cs -
(k Y ]‘)aTj+1 Tip (a’Tj)

< ca(k —j—2)%!

for k large, where c3 and ¢4 > 0 are constants. Then along the lines of
proof corresponding to that of Theorem 1 in Ortegal21], we obtain that
(b) of Lemma 2.1 holds. Theorem 1.2 is proved. O

Using another version of Fernique’s lemma [12] on the d-dimensional
Gaussian process, the following lemma estimates an upper bound of the
large deviation probability (cf. [16]).

LEMMA 2.5. For any given € > 0, there exists a positive constant C,
depending only on € such that for all x > 1

Xd _ Xd
P{$m qp 1K+ ) muzx}
0<t<T o0<s<ar U(d, GT)

T 2
< il
s C <(LT) ®q (2+€.’L‘> ’

where ®4(x) = P{||N¢(0,1)|| > =} and N¢(0,1) denotes a d-dimensional
standard normal random vector.

(6)

Proof of Theorem 1.3. First suppose that 0 < r < co. By condition
(iii), for any €, 0 < e < 1

L > (logmy—
ar

for sufficiently large T'. Note that for sufficiently large x > 0 we have

2

D,(z) < Crt2e"/2 < Cexp ( - 22_ 6)

for some C > 0, then by Lemma 2.5, we have

d _ xd
P{wp wup X%+ 5) X@anyw%
0<t<T 0<s<ar g(d,ar){2log (T/ar)}

T _ [2(1+2)
S CE(],_'; @d ('—2:'-—6— 210g (T/G,T)>
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T
< C'e-a— exp (— (1 +¢)log (T/ar))
T
< C’s(logT)*g(r_e) —0 as T — oo.

Hence there exists a sequence {7}, } such that

o | X4t +s) — X))
liminf sup sup
"m0 0ISTy 0<s<ar, o(d,ag,){2log (Ty,/az, )}

172 <142¢ a.s.

Hence, by condition (iii), we obtain

(7)  liminf sup sup I X%t +5) — X)) <4/ r a.s.

n—=00 0<t<T, 0<s<ar, U(d, aTn) B(Tn,aTn) B L+

Next consider the case of r = 0. It follows from (iii) that for small

e >0, T/ar < (log T)E/(2(2_€)) for large T. Applying Lemma 2.5, we
get

[ X4t +s) — X (1) }
P< su su > €
{ogth ogsgpaT o(d,ar)B(T,ar) —

(%) exp ( — glog (% logT>)

C:
< C’E(logT)_a/4 —0 as T >

IA

and hence there exists a sequence {7, } such that

IX(t + 5) — X4(2)

o |
8 liminf su su <0 a.s.
®) noo <yer, OSss]ZTn o(d,ar,) B(Tn,ar,)
Combining (7) and (8) completes the proof of Theorem 1.3. O

Proof of Theorem 1.4. When r = 0, our result is trivial and the result
for the case of r = 0o was proved by Lin et al.[16]. We here consider the
case of 0 < r < 0o. For # > 1 and integers k and j, let

(9) Apj ={T: 051 < T < 0%, 09! <ap <07},



1226 Zhengyan Lin and Kyo-Shin Hwang

For any 0 < 7 < 1, by condition (iii), I := k — [ logk] < j <

log 6
[%ﬁg—g log k] =: I}, provided k is large enough. Clearly

ek—l o1 1/2
> . 0~
Tlenfk] B(T,ar) > (2 log ( 7 log ))

B ok . 1/2
>0 (2log (Wlogé? >>

= e_lﬂkj.

For some M > 0 set Ny ; = [0%~1/(M87)]. By (iii) for large k, we have
ok 1/2
< ——log 6"
3 f(T,ar) < {2108 (G ogt*) }

< {292(1J;r) 1ogNk,j}1/2.

By the regular variation of ¢;(-), i =1,--- ,d, we have

o771 2 (0 - 1)"%0i(67 — 7).
Thus
1 X4t + ar) — X°(D)))
liminf su
Tooo gsver  o(d,ar) BT, ar)

P : 1 X4t +ar) — X@)||
>1 f f f
- 1;221; Ikél;gl,’c Tlerzl4kj ozltlg'r O'(d, aT) ,B(T, aT)

> liminf inf su Xt +¢7) - Xl
(10) T Tk—oo I<i<I 0<t<§k 1 0(d, 69) 0{2 (1+1/r) IOgNkJ}1/2

(6 — 1)
—limsup sup su su , .
PR Le<i<IL o<t<p9'c gi- 1<I:<ev o(d, 09 — 03=1) 0= By;
X || X4t+67) — XUt + s)

= H1/(0(1 + 1/r)?) — (6 — 1)*0 H,.

At first, we will show that for any R > 2,

(11) Hy, <R as.



On the increments of a d-dimensional Gaussian process 1227

Take 6 being close to 1 such that ~'R > 2. By the same way as the
proof of Lemma 2.5, we obtain

[ Xt +67) — X4t + )]l o o1
P{ su su su A - > 07" Rfy;
{Ikgjzl,; ogtgpok 0:‘—155391 o(d, 07 —6i-1) J
LR 8
- _ k—j k
SCEZﬁj—ﬁj—leXp{ 2+6log(9 log 6 )}
J=Ix
< Ce k3,

where C, > 0 is a constant.
By the Borel-Cantelli lemma, we obtain (11).
Consider H;. Let ig = ip(6’) and

X, (IM§7 + 69) — X, (IM69)

1 <1< Nigyy,

then Wy(j;1) is a standard normal random variable. We have

|XA(IMOT + 69) — XUMOT)|

Hy, > liminf min  max 1/2

koo LSJSIISISNe;  g(d,69) (21og Ni;)
X;(IM67 +67) — X;(IM6?
(12) > liminf min  max max‘ ( +&) (1/2 )
k—oo I<y<I1SISNe; 1SISd (4, 07) (2log N ;)
»
> liminf min max —Ml—g =: H3.

Let us estimate a lower bound of Hs. Using the elementary relation
ab = (a® + b? — (a — b)?)/2 and Lemma 2.3, it follows that for [ > I’

Iru| := |Cov(Wo (45 1), Wo(5; 1))
1 . . . .
. J ¥ . 03 J
— X, (MI167 + 67) X, (M1'67)
— X, (M167) X, (M09 + 67) + X;, (M167) X, (MI'67 )H

< 2021(9j) \ (a,?o (M= 1)67) + 07) — o2 (M(1 - z’)eﬂ'))

(13) — (o2 (M -1)87) — o2 (M- V)97 — 0) )|
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1 M(1-1)67 +67 M(-1)67
/ Ao @) - [ CAO)

202 (07) | asuiyos M(—~1)65 -6
c2 02-20 (M(l—1")07 — 67)
= 202 (09) (M(—T)—1)2
<cs|MIA-U)—1P* 2 < g1 -0

for any given § > 0 provided M is large enough, where 0 < v = 2 — 2.
Let m,l = 1,---, Ny, and £ be independent normal variables with
En = E¢=0and En? =1—§ and E¢? = §. Then by Slepian’s lemma,
we have

ol _MZ)_MSl—sE
1<ISNy 5 (21og Nk,])

) o 1/2

_P{K?i%%‘ m+& < (1~ 3¢)(2log Nij) }

< P{ max 7 < (1 — 2¢)(2 1ogNk,j)1/2} + P{¢ > ¢(2log Ni;)'/?}
1<I<Ny,;

IA

2
{1—exp(—-(1—¢) logNk,j)}N’“’j + exp {——% logNk,j}

A

2
exp {~Ng;}+ N
< 2(65-i1 M)~ /°
and taking 6 < e2r(1 — 7)/2, we obtain
P min max —M— <+V1-¢
I, <G<I 1<I<Ny,; (2logNkJ) 1/2
<2 Z ak 1- ]/M —2/5 < cef™ 2(log8) "' logk = ¢ k—
Ik<J<I’
which implies

ZP{ min max ——%(—J’l)—<1—3a}<oo
k=1

I.<j<IL 1<ISNg (210gNk3) 1/2 =
and hence by the Borel-Cantelli lemma, we have,

liminf min max Wol3i1) >1—-3 a.s.

koo L<jsIi 1SISNeg (2]0g (Vi)'
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Since € is arbitrary, we obtain

(14) H;>1 as.
Combining (11}, (12), (14) with (10), the proof is completed. O
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