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Abstract: Age-related White Matter Changes (WMC) on Magnetic Resonance Imaging (MRI) are known to appear frequently in
Multiple sclerosis (MS) and Alzheimer’s disease and to be related to cognitive impairment. The characterization of these WMC
is very important to the study of psychology and aging. These changes consist of periventricular and subcortical types, however
it is difficult to detect and segment WMC using only intensity-based methods, because their intensity level is similar to that of the
gray matter (GM). In this paper, we propose a new method of segmenting periventricular WMC using K-means clustering and

morphological features.
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INTRODUCTION

White matter changes (WMC) or white matter
lesions frequently appear in elderly subjects with age-
related pathologies [1]. In general, pathologies such as
MS and Alzheimer’s disease are known to induce these
WMC, which are thought to be related to cognitive
impairment [2], [3], [4], [5], [6]. Quantitative
characterization of the detected WMC is essential for
the assessment of disease progression and treatment
efficacy.

MRI is one of the most useful methods of detecting
and segmenting WMC. In general, studies based on
MRI have used several types of images, such as T2-
weighted, Proton Density (PD)-weighted, T1-weighted
and Fluid Attenuated Inversion Recovery (FLAIR)
images. WMC wusually exhibit high intensity in both
PD-weighted and T2-weighted images, while they
appear as regions of low intensity in T1-weighted
imagés. To detect and segment these WMC correctly, it
is important to properly utilize the relation between
them. T2-weighted and PD-weighted images are
usually used together, because they involve a short

Corresponding Author : In-Chan Song

Department of Radiology, Seoul National University Hospital,
28 Yongon-Dong, Chongno-Gu, Seoul, Korea

Tel. 02-2072-3941, Fax. 02-763-0379

E-mail. icsong@radcom.snu.ac.kr

scan time relative to any other sequences.

Most previous methods used manual or semi-
automatic schemes to segment WMC correctly [7], [8].
Segmentation is performed by experts who are well
trained medical specialists not physicians or
engineering staffs. Therefore its results have very low
possibility to be false. Pannizo et al. first used a
supervised automatic procedure to discriminate
between the brain tissue, fat and the skull, and then
went on to develop an algorithm based on a histogram
analysis that detects white matter lesions, such as
those associated with MS [9]. Some of the previously
developed WMC detection methods including brain
tissue segmentation have used intensity-based
clustering schemes, based on the fact that each type of
tissue has a different intensity level [10], [11]. K-means
clustering is basic scheme to be used for usual
segmentation including general image application {12].
Warfield proposed an algorithm to segment
multichannel brain image wusing K-NN(Nearest
Neighbors) classification rule [10]. Mohamed et al. used
a modified fuzzy c-means clustering method to
segment brain tissues in CT and MR [11]. The method
in [11] is inspired from Markov Random Field (MRF)
and robust against noise by modifying the conventional
fuzzy c-means algorithm. Ardizzone et al. also utilized
the modified fuzzy c-means method to detect MS in MR
images [13]. They used new two channel fuzzy c-means
model since both T2 and PD images were used.
Recently statistical algorithms are widely used to
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discriminate brain tissues precisely. Expectation
maximization-based method proposed by Joshi et al.
fits compartment statistics of brain structure into sub
tissue voxels [14].

Classical manual segmentation method relies on the
observer’s subjective decision. Because of the
observer’s subjectivity, however, this method has
observer variability. In an attempt to decrease this high
observer variability, basic segmentation algorithms,
such as thresholding strategies [15], region growing

[16], were frequently employed with manual interaction.

However, even though manual schemes can produce
good results for individual cases, their reproducibility
cannot be guaranteed and, therefore, the results
obtained from manual schemes are difficult to be
analyzed statistically and used as objective measures,
because of their limited reliability. In addition, manual
analyses of a large number of MR images performed by
human experts are extremely time consuming
processes. Therefore, there is a pressing need for an
automated method of segmenting white matter lesions
that can analyze a large amount of image data in a
reproducible way. For intensity-based clustering
schemes, they often produce incorrect results, since
the intensity level of the WMC is similar to that of other
tissue, and because of the existence of intensity
variability, such as RF inhomogeneity [17] and partial
volume effects [18]. Therefore, the ambiguous
discrimination between normal tissue and lesions may
cause the decrease of reliability of the segmentation
process. Some methods may use an iterative user
interaction, in order to handle problems such as noise
and RF inhomogeneity [17]. In addition, although
statistical method is very logical and represents good
results, but they may also require some manual
interaction as algorithm of needs some manual
segmentation by expert to resolve partial gray-white
voxel problem [14].

In this paper, we propose a new scheme to correctly
detect and segment WMC using intensity-based
clustering and morphological features. Since this
research range is limited to periventricular WMC
except sub-cortical WMC, material and methods are
chosen according to it. Moreover, based on various
experiments, we showed that the proposed method
provides an effective means of segmenting WMC.

MATERIAL

The proposed method was implemented using IDL
(Interactive Data Language, Research Systems, Inc) on
a Pentium 4 1.6GHz PC. MR imaging was performed
with a 1.5-T unit (Magnetom Vision Plus, Siemens,
Germany) using a quadrature transmit/receive head
coil. Contiguous transverse dual FSE PD-weighted and
T2-weighted images were obtained with 3400/18/90
(TR/TE/effective TE), 3-mm-thick sections (contiguous
and interleaved}, 22x22cm FOV, a 256 x 192 matrix
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size, >50 sections, an echo train length of eight, and a
0.86-mm pixel size. Our experiments used T2-weighted
and PD-weighted axial images of Alzheimer’s disease
patients and some normal subjects. Each image set
had 40~45 slices and covered the whole brain. Because
the proposed method focused on the segmentation and
detection of the periventricular WMC, which are
adjacent to the lateral ventricle, we restricted the target
images to slices which included the lateral ventricle.
However, the development of an automatic detection
algorithm for slices which include the lateral ventricle
in 3D image data may represent an altogether different
problem and, therefore, this issue was not covered in
this paper. In this study, we heuristically decided the
target slices to use for the experiments. We experiment
with several patient’s data and Fig. 9 and Fig. 10
shows overall process of the proposed method and
Table 1 represents final detection results for others.

METHODS
Overall Scheme and MR Imaging

Fig. 1 shows the entire block diagram of the
proposed method used to detect and segment the WMC
correctly. Firstly, non-brain regions such as the skull,
fat and face muscle are removed from the PD images
using the multi-seeds region growing method based on
our brain model which uses prior knowledge about the
shape of the brain. The proposed skull and scalp
stripping is very important step since its result may
affect the consecutive processes. Then, the intracranial
brain mask image obtained from the PD image is
applied to the T2 image. Secondly, the cerebrospinal
fluid (CSF) is segmented automatically using the ratio
image of the PD image to the T2 image [19], [20] and
the Ostu thresholding method [15]. Thirdly, the GM
and white matter (WM) are segmented in the PD image
using the K-means clustering method [12]. Finally, the
periventricular WMC are detected using morphological
features, which is that the WMC are adjacent to the
lateral ventricle and have an intensity level similar to
GM.

The Skull and Scalp Stripping Process

Before the segmentation of the CSF, GM and WM,
however, it is necessary to remove any non-brain
regions. We use a hybrid method, involving an
application of the region growing method to the T2-
weighted and PD-weighted images, in order to remove
the skull [16]. To use this hybrid method with the T2-
weighted and PD-weighted images, both images must
be scanned in the same slice position. To remove the
skull, initial seed points for region growing are selected
To select appropriate initial seed points, a rectangle
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was drawn around the brain and four initial points
were obtained using our brain localization model. Fig.
2 shows the brain localization model used for the skull
and scalp stripping process.
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Fig. 1. Overall block diagram of the proposed method.

(b)
Fig. 2. The proposed brain localization model for the (a)
cerebrum and (b) cerebellum. Four white points are used as

the initial seed points of the region growing method.

Our model is designed to represent the location of
the brain material excluding any non-brain regions
and to help select the initial seed points. The locations
of the seed points are considered for the distribution of
the brain material in the cerebellum rather than in the
cerebrum. If the target is limited to the cerebrum, the
selection of just two points in the front lobe or parietal
lobe is sufficient. Fig. 3 shows the process used to
draw the rectangle surrounding the brain and the
selection of the four initial points.

(@)
Fig. 3. (a) Rectangle to surround brain skull, (b) Selection of
four initial points for region growing.

After the selection of the initial points in the PD-
weighted images, the region growing method is
independently applied starting from each initial point,
because the brain parenchyma is divided into several
parts [16]. The four segmented masks obtained by the
previous region growing method are merged together
and, then, the brain parenchyma mask is obtained in
the PD-weighted image. To obtain the stripped images
from the T2-weighted image, the brain parenchyma
mask obtained from the PD-weighted image is applied
to the T2-weighted image. This is possible because the
T2- and PD-weighted images are scanned in just equal
slice positions. Fig. 4 shows the resultant images
obtained from the above operations.

CSF Segmentation in T2- and PD-weighted Images

After obtaining the stripped brain images, the CSF,
GM and WM are segmented sequentially. MRI is a
parameter-specific imaging method and, therefore,
each specific imaging method provides high contrast or
high intensity discrimination for specific tissues. T2-
weighted images show high intensity for the CSF parts,
while PD-weighted images show high contrast between
the GM and WM. Therefore, the different
characteristics of each imaging sequence can be used
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in tissue segmentation. In this study, however, in order
to segment the CSF region, we used the ratio image of
the PD-weighted image to the T2-weighted image [18],
[19], based on Equation (1) and the Ostu thresholding
method [15].

PD
Ratio Image = — 1
g 72 (1)

In the ratio image, the CSF region appears darker
than any other region, including the GM and WM and,
therefore, it can be segmented by clustering the light
and dark parts using the Ostu thresholding method
(Fig. 5).

Fig. 4. The stripped images using the multi-seeds region
growing method and the mask operation. The top two images
represent the original PD-weighted image and its stripped
version, respectively. The bottom two images represent the
original T2-weighted image and its stripped version,
respectively.
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(© (d)

Fig. 5. CSF segmentation process. (a) Stripped T2-weighted
image, (b) stripped PD-weighted image, (c) ratio image of
PD-weighted image to T2-weighted image, (d) segmented
CSF region using the Ostu thresholding method.

GM and WM Segmentation in PD-weighted Image

In order to segment the GM and WM, the K-means
clustering method is used [12]. Because the PD-
weighted image has high contrast between the GM and
WM, as mentioned in the above section, the intensity-
based clustering method can be used to segment the
GM and WM. Firstly, we subtract the CSF region
obtained from the stripped PD-weighted image
described in the previous section. Then, the K-means
clustering method is applied to the subtracted images,
in order to segment the GM and WM. The GM and WM
regions are obtained by clustering with a specific
number of clusters, merging some regions and then
merging the remaining regions. In this paper, the
number of clusters used for the GM-WM segmentation
in the PD-weighted images was set to four, because of
the partial volume effect. The GM mask is the highest
level region and the WM mask is obtained by merging
the second and third level regions, while the lowest
level represents the background. Fig. 6 shows the
result of the segmentation process for the GM and WM.

Fig. 6. GM and WM segmentation process. (a) Stripped PD-
weighted image, (b) segmented GM region and (c)
segmented WM region.
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Detection of Lateral Ventricle in Segmented CSF
Image and Segmentation of Periventricular WMC

In this method, firstly, the lateral ventricle must be
detected, in order to segment the periventricular WMC
using the relation between the lateral ventricle and the
WMC. In the CSF mask of Fig. 7(a), the lateral ventricle
appears as a set of a few large blobs of simple shape,
while the subarachnoid space appears in the form of a
thin continuous material. Therefore, the lateral
ventricle can be accurately detected wusing the
difference between the shapes of these two regions.
Because the CSF regions were detected in the previous
step, the separation between the lateral ventricle and
the subarachnoid space can be readily accomplished.
In this study, 2D mathematical morphology [21] and
region labeling methods were used. In this study, we
used the opening method, which is defined as follows:

Opening: AcB=(All B)®B (2)
Closing: AeB=(A®B)LU B (3)
Where U is the mathematical erosion operator and

@ is the dilation operator. A is an image and B is a
disc.

Morphological opening generally smoothes the
contour of an image, breaks narrow isthmuses, and
eliminates thin protrusions. By applying this opening
operation to the CSF region mask, most of the
subarachnoid spaces were removed, as shown in Fig.
7(b). In this study, we used a 7x7 rectangular mask for
the opening operation.

(b)

Fig. 7. Detection of lateral ventricle. (a) Segmented CSF
region mask, (b) lateral ventricle detected using
mathematical morphology opening operation.

After the detection of the ventricle, two
morphological features were used to segment the
periventricular WMC. First, the periventricular WMC
can be clustered into the GM in the previous tissue
segmentation process, even if they are included in the

white matter, because their intensity level is similar to
that of the GM. This is not only the limitation of the
intensity-based clustering method, but also the
important motive in our method of detecting the
periventricular WMC. Second, the periventricular WMC
are distributed adjacent to the ventricle of the CSF.
Finally, the ventricle is surrounded by white matter.
Therefore, it is possible to segment the periventricular
WMC by using these morphological features.

(2

Fig. 8. Segmentation of periventricular WMC. (a) Segmented
lateral ventricle, (b) WM region, (c) simplified image using
morphological closing operation to segmented WM region
mask, (d) overlapped image of segmented lateral ventricle
and WM region, (e) candidate region between segmented
lateral ventricle and WM region, (f) thinned image of
candidate region and (g) final periventricular WMC.
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To find the candidate region of the periventricular,
the segmented ventricle image and segmented WM
mask image were used. Firstly, to fill up any
unnecessary holes in the subarachnoid space, a
morphology closing operation, such as defined in Eq.
(3), is applied to the segmented WM region mask (Fig.
8(c)). When the lateral ventricle and closed WM masks
are merged, the blank space between the two masks
may be considered as a candidate region for the
periventricular WMC. This blank space can be
obtained by using a morphology closing operation with
a small size operating disc in the segmented lateral
ventricle mask. To segment the periventricular WMC
more accurately, we used the multi-seed region
growing method. Although we may simply use the
candidate region as seed points, it is preferable to
make the initial candidate region thin, in order to
reduce the number of initial seed points and

computation time. Fig. 8(f) shows the thinned image of

the candidate region, which is used as the initial seed
points for the region growing method, and Fig. 8(g)
shows the periventricular WMC segmented using the
region growing method.

RESULTS

The proposed method consists of several sub-
processes. However for multiple sequential steps, no
user interaction is needed except input file loading of
T2 and PD images. In this section experiment results
are described.

(©) (d)

Fig. 9. Automatic skull and scalp stripping result of T2- and
PD-weighted images. (a) T2-weighted image, (b) PD-
weighted image, (c) stripped image of (a), (d) stripped image
of (b).

J. Biomed. Eng. Res.

In Fig. 9(c) and (d), most of the non-brain regions
are removed by the proposed skull and scalp stripping
algorithm. Although a small region remained, it did not
affect the subsequent tissue segmentation operation
and WMC detection result. In Fig. 8, the total
computation time required for removing the skull from
the T2- and PD-weighted images is 4.68 sec. In Fig. 10,
(a), (b) and (¢) show the brain tissue segmentation
results obtained from the image stripped from skull
and scalp (Fig. 9{c) and (d)). Fig. 9(a) shows the CSF
region mask and Fig. 10(b) and (c¢) show the GM and
WM region masks. In Fig. 10(b), a part of the white
matter adjacent to the lateral ventricle is clustered as
gray matter. To get resultant periventricular WMC,
some sub processes are needed. In this study, the
region growing method is also applied to the segmented
GM image, in order to segment the periventricular
WMC. The seed points used for region growing are set
close to the boundary of the ventricle, because most of
the periventricular WMC are adjacent to the lateral
ventricle. Some points on the boundary could be used,
because of the possibility that some of them do not
correspond to the periventricular WMC. If it is applied
to the boundary points which are out of the
periventricular WMC range, the region growing method
may result in incorrect segmentation. Therefore, the
candidate region of the periventricular WMC must be
correctly set for accurate segmentation to be obtained.
Fig. 10(d) and (e} show the detection results of the
overlapping WMC on the original T2- and PD-weighted
images. The computation time required for the
segmentation of the brain tissues and the detection of
the periventricular WMC are about 5.36 sec and 2.46
sec, respectively. The total computation time required
for the automatic detection of the periventricular WMC
is 12.53 sec. and Table 1 shows final detection results
for other patients.

(d) (e)

Fig. 10. Brain tissue segmentation and WMC. detection. (a),
(b) and (c) are the segmentation results of the brain tissue,
including the CSF, GM and WM. The blue lined regions of (d)
and (e) are the periventricular WMC detected by the
proposed method.
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CONCLUSION AND DISCUSSION

In this paper, we proposed a fully automatic
algorithm for the detection of periventricular WMC.
Our algorithm consists of 3 steps as following skull
and scalp stripping, the segmentation of the brain
tissue including the CSF, GM and WM and, finally, the
detection of the periventricular WMC. .

As the first step of our overall algorithm, the skull
and scalp stripping process, which removes non-brain
regions from the PD-weighted image, makes use of the
multi-seed region growing method. The PD-weighted
image has less contrast than the T2-weighted image
and, therefore, it is possible to obtain the intracranial
mask using the multi-seed region growing method.
Also, four seed points were selected from our brain
model, by considering the shapes in both the cerebrum
and cerebellum (Fig. 2). Our proposed stripping
algorithm was able to successfully remove the non-
brain regions in both the T2- and PD-weighted images
in 5 sec.

Our segmentation algorithm used both the ratio
image of the PD-weighted image to the T2-weighted

image and the K-means clustering method sequentially.

The former was used to segment the CSF region, while
the latter was used to segment the GM and WM in the
genuine brain images extracted from non-necessary
skull and scalp. This segmentation step may affect the
subsequent WMC detection step, because the WMC
detection method was based on the results obtained
during the segmentation step. The use of the ratio
image of the PD- to the T2-weighted image {18], {19]
allowed the CSF to be segmented faster than with any
of the previous methods, such as the intensity-based
classification technique, due to the combined use of
the Ostu thresholding scheme [15]. The K-means
clustering scheme, which is used to segment the GM
and WM has an advantage in that it is simple and fast.

The last step is the detection of the periventricular
WMC from the segmented results. To segment the
periventricular WMC efficiently, we wused its
morphological features, in that they are Ilocated
adjacent to the lateral ventricle. We separated the
lateral ventricle from the segmented CSF region prior
to the detection process. The final detection process
used mathematical morphology operations and region
growing methods.

The proposed algorithm uses the morphological
features of the periventricular WMC, in the sense that
they have an intensity level similar to that of the GM
and are located adjacent to the lateral ventricle. From
the segmentation results, it can be concluded that our
assumptions are correct and that the proposed
algorithm is very efficient at detecting and segmenting
the periventricular WMC. Recently many brain image
analysis systems support brain tissue extraction such
as Brainsuite [22] and LONI pipeline processing system
[23]. These tools offer many powerful segmentation
algorithm and software modules, but usually their
target application is a general brain tissue extraction

system so that it is not easy to use for specific
application. Since methods used in above tools are
mainly based on statistical algorithm with brain
structure model. Hence for our target application, the
proposed method may be more proper because it
considers specific feature of periventricular WMC.

However, the proposed method has some limitations
and problems. Firstly, the computation time needs to
be reduced, even if the operation is performed fully
automatically. In the experiment results, the proposed
method needed between 10 sec and 15 sec to perform
the processing required for the individual image slice
set of T2- and PD-weighted images. Because the brain
model for the detection of the seed points is made by
considering the shapes of both the cerebrum and
cerebellum, the proposed method selects four seed
points. However, it is unnecessary to use all 4 seed
points in the detection of the periventricular WMC,
which are located in the lateral ventricle. Therefore, the
computation time can be reduced, by using only two
seed points and we confirmed this in a supplementary
experiment. Table 1 shows the experiment results as a
function of the number of seed points used. In several
cases, we confirmed that the computation time was
decreased by reducing the number of seed points,
without there being any impact on the segmentation
performance.

Actually, the K-means clustering process used for
tissue segmentation was the most time consuming
process, because the IDL language used in this
implementation generally requires a long time to
perform the loop operations, which are used repeatedly
in K-means clustering. Therefore, this time could be
reduced by implementing the program using a different
language, such as C or C++.

One of the major limitations of the proposed
algorithm is that the detection performance is
dependent on the segmentation of the brain tissue.
Poor segmentation induces inaccurate subsequent
detection of the WMC and incorrect quantification
results, because the morphological features of the
periventricular WMC cannot be used efficiently in such
cases.

Intensity-based clustering segmentation methods,
such as the K-means clustering technique used in this
study, depend on the changes in the intensity
distribution of the images. One of the most critical
problems which reduce the performance of intensity-
based clustering methods in MR images is intensity
non-uniformity {17], which is known to be induced by
the inhomogeneous sensitivity profile of the surface-
coil. When this happens, the same tissues may have
different intensity levels and, therefore, successful
segmentation using intensity-based clustering methods
is difficult to accomplish. The K-means clustering
method used in this paper also shows weak
performance under conditions of intensity non-
uniformity. To obtain high performance in spite of this
intensity non-uniformity, it will be necessary to apply
an intensity bias correction process prior to the
segmentation process [17], [24].
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Table 1. Computation time (sec) as a function of the number of seed points used in the skull and scalp stripping process. (62
case 1 and 2) and 77 (case 3 and 4) years old woman with Alzheimer’s disease

Finally, the proposed algorithm has not yet been
validated statistically, by comparing its results with
those obtain manually by experts. Although the
proposed method shows qualitatively good results,
quantitative analysis is needed for the verification of its
accuracy and reproducibility. The detection of sub-
cortical WMC and the statistical validation of this
method against a gold standard remain as future
works.

As MRI technology grows up new imaging
techniques are developed. New types of images offer
good quality for better diagnosis so many conventional
diseases can be detected easily. In quantitative
research using MRI, new imaging technique is also
very helpful to users. In this paper, we used T2 and PD
images together since PD has high contrast between
GM and WM and CSF can be well identified in T2
image. If new imaging technique such as gradient-echo
based T1 weighted image (T1WI} is used, we may get
better result. However to obtain MRI data from real
patients is still troublesome because of need for a lot of
money and time. In generally, T2 and PD are very

J. Biomed. Eng. Res.

usual sequence and even both of them can be scanned
with one sequence. Therefore the proposed method is
very economical in real application so that users and
researchers without new imaging facility can also use it.

In conclusion, the proposed algorithm for the
detection of periventricular WMC demonstrated its
capacity to overcome the limitations of the previous
intensity-based clustering method, based on the use of
morphological features. Moreover, because the
proposed algorithm is fully automatic, it can process a
large amount of image data rapidly and efficiently. The
proposed algorithm in conjunction with an intensity
non-uniformity correction process has the potential to
provide a powerful method of detecting periventricular
WMC.

REFERENCES

[1] P. Sullivan, R. Pary, F. Telang, “ Risk factors for white
matter changes detected by magnetic resonance imaging




(2]

(3]

(4]

15]

(6]

(7}

(8]

9]

(10]

(11]

Fully Automatic Segmentation Method of Pathological Periventricular White Matter Changes Using Morphological Features

in the elderly”, Stroke, Vol. 21 pp. 1424 -1428, 1990.

J. V. Swieten, S. Staal, L. Kappelle, M. Derix and J. V.
Gijn, “Are white matter lesions directly associated with
cognitive impairment in patients with lacunar infarcts?” , J.
Neurol, Vol. 243, No. 2, pp.196-200, 1996.

C. DeCarli, B. Miller, G. Swan, T. Reed, P. Wolf and D.
Carmelli, “Cerebrovascular and = Brain Morphologic
Correlates of Mild Cognitive Impairment in the National
Heart, Lung, and Blood Institute Twin Study”, Arch.
Neurol., Vol. 58, pp. 643-647, 2001.

S. Gupta, M. Naheedy, J. Young, M. Ghobrial, F. Rubino,
W. Hindo, “Periventricular white matter changes and
dementia. Clinical, neuropsychological, radiological, and
pathological correlation”, Arch Neurol., Vol.45, pp. 637-
641, 1988.

D. Snowdon, S. Kemper, J. Mortimer, L. Greiner, D.
Wekstein and W. Markesbery, “Linguistic ability in early
life and cognitive function and Alzheimer’s disease in late
life: Findings from the Nun Study”, Journal of the
American Medical Association, Vol. 275, pp. 528-532,
1996.

_H. Wolf, G. Ecke, S. Bettin, J. Dietrich and H. Gertz, “Do

white matter changes contribute to the subsequent
development of dementia in patients with mild cognitive
impairment? A longitudinal study”, International Journal
of Geriatric Psychiatry, Vol. 15, pp. 803-812, 2000.
L. Truyen, J. V. Waesberghe, M. V. Walderveen, B. V.
Oosten, C. Polman, O. Hommes, H. Ader and F. Barkhof,
“Accumulation of hypointense lesions (“black holes”) on T1
spin-echo MRI correlates with disease progression in
multiple sclerosis”, Neurology, Vol. 47, pp. 1469-1476,
1996.
M. V. Walderveen, F. Barkhof, H. ommes, C. Polman, H.
Tobi, S. Frequin and J. Valk, “Correlating MRI and clinical
disease activity in multiple sclerosis: relevance of
hypointense lesions on short-TR/short-TE (T1- weighted)
spin-echo images”, Neurology, Vol. 45, pp. 1684-1690,
1995.
F. Pannizzo, M.J.B. Stallmeyer, J. Friedman, R.J. Jennis,
J. Zabriskie, C. Pland, R. Zimmerman, J.P. Whalen, and
P.T. Cahill, “Quantitative MRI studies for assessment of
multiple sclerosis”, Magnetic Resonance in Medicine, Vol.
24 pp. 90-99, 1992.
S. Warfield, “Fast k-NN classification for multichannel
image data”, Pattern Recog. Lett., Vol. 17 No. 7, pp. 713-
721, 1996. :
N. A. Mohamed, M. N. Ahmed and A. A. Farag,
“Modified fuzzy C-mean in medical image segmentation”,
Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP'99), Vol. 6, pp.
3429 - 3432, March 1999.

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

391

S. Z. Selim and M. A. Ismail, “K-means-type
algorithms” , IEEE Trans. Pattern Anal. Machine Intell.,
Vol. 6, pp. 81-87, Jan. 1984.

E. Ardizzone, R. Pirrone, O. Gambino and D. Peri, “Two
channels fuzzy c-means detection of multiple sclerosis
lesions in multispectral MR images”, Image Processing.,
International Conference on, Vol.2, pp. 345-348, 2002.
M. Joshi, J. Cui, K. Doolittle, S. Joshi, D. V. Essen, L.
Wang and Michael 1. Miller, “Brain Segmentation and
the Generation of Cortical Surfaces” , Neurolmage, Vol.
9, Iss. 5, pp. 461-476, May 1999.

N. Otsu, “A threshold selection method from gray-level
histogram”, 1IEEE Transactions on System, Man, and
Cybernetics, SMC-8, pp. 62-66, 1978.

R. Adams and L. Bischof, “Seeded region growing”,
IEEE Trans. Pattern Anal. Machine Intell., Vol. 16, pp.
641-647, 1994.

M. Styner, C. Brechbuhler, G. Szckely and G. Gerig,
“Parametric estimate of intensity inhomogeneities
applied to MRI”, IEEE Transactions on Medical Imaging,
Vol. 19, Issue. 3, Mar 2000, pp. 153-165.

M. G. Ballester, A. P. Zisserman and M. Brady,
“Estimation of the partial volume effect in MRI”, Medical
Image Analysis, Vol. 6, Iss. 4, pp. 389-405, Dec. 2002.
W. K. Pratt, Chapter 12.9. Multispectral Image
Enhancement, Digital Image Processing, New York:
Wiley, 1978.

H. S-Zadeh, J. P. Windham, D. J. Peck and A. E. Yagle,
"A Comparative Analysis of Several Transformations for
Enhancement and Segmentation of Magnetic Resonance
Image Scene Sequences”, IEEE Transactions on
Medical Imaging, Vol. 11, No. 3, pp. 302-318, 1992.

R. C. Gonzalez and R. E. Woods, Digital Image
Processing, Addison-Wesley Publishing Company, Inc.,
1992.

D. W. Shattuck and R. M. Leahy, “BrainSuite: An
automated cortical surface identification tool” , Medical
Image Analysis, Vol. 6, Iss. 2, pp. 129-142, June 2002.
D. E. Rex, J Q. Ma and A. W. Toga, "The LONI Pipeline
Processing Environment”, Neurolmage, Vol. 19, Iss. 3,
pp. 1033-1048, July 2003.

J. Sled, A. Zijdenbos, A. Evans, “A nonparametric
method for automatic correction of intensity
nonuniformity in MRI data”, IEEE Transactions on
Medical Imaging, Vol. 7, Issue. 1, pp. 87 — 97, Feb.
1998.

Vol.26. No. 6. 2005



