DOI QR코드

DOI QR Code

Suppression of Stimulated Brillouin Scattering in Optical Fiber using Sampled-Fiber Brags Grating

샘플링 광섬유 Bragg 격자를 이용한 광섬유 내의 유도 Brillouin 산란 억제

  • Lee, Ho-Joon (Dept. of Information and Communication, Hoseo Univ.)
  • 이호준 (호서대학교 전기정보통신공학부 정보통신공학전공 광통신연구실)
  • Published : 2005.12.01

Abstract

I have investigated a scheme for suppressing stimulated Brillouin scattering in optical fibers. The scheme makes use of a sampled Bragg grating fabricated within the fiber used for transmitting intense Q-switched pulses. The grating is designed such that the spectrum of the Stokes pulse generated through stimulated Brillouin scattering falls entirely within its stop band. I show numerically that the number of sampled fiber Bragg gratings in 1 m is applied directly to suppressing stimulated Brillouin scattering rather than the coupling coefficient. This prevents the build up of the backward-propagating Stokes wave and mitigates the deleterious effects of stimulated Brillouin scattering. The simulation shows that 15 ns pulses with 1 kW peak power can be transmitted though a 1 m-long fiber with little energy loss using this scheme.

본 논문에서는 광섬유 내에서 유도 브릴루앙 산란을 억제하는 방법에 대하여 연구하였다. 광섬유 내에 샘플링 브라그 격자를 사용함에 의하여 강한 Q-스위치 펄스를 전송할 수 있도록 하였다. 격자는 유도 블릴루앙 산란으로 생성되는 스토크 펄스의 스펙트럼이 모두 브라그 격자의 반사 대역에 오도록 설계된다. 1 m 내에 샘플링 광섬유 브라그 격자의 수가 결합계수 보다 유도 브릴루앙 산란의 억제에 직접적인 영향을 미친다는 것을 보였다. 이것은 후방 스토크 파의 발생을 억제하며 유도 브릴루앙 산란의 악 영향을 감소시킨다. 본 연구 방법을 통하여 1 kW 최대 파우어를 갖는 15 ns 펄스가 작은 에너지 손실을 발생시키며 전송될 수 있다는 것을 시뮬레이션을 통해 보였다.

Keywords

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, 2001), Chap. 9
  2. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, New York, 2002), Chap. 2
  3. M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, 'Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser', Opt. Lett., vol. 27, pp. 1294-1296, 2002 https://doi.org/10.1364/OL.27.001294
  4. N. A. Brilliant, 'Stimulated Brillouin scattering in a dual-clad fiber amplifier' , J. Opt. Soc. Am. B, vol. 19, pp. 2551-2557, 2002 https://doi.org/10.1364/JOSAB.19.002551
  5. A. F. El-Sherif and T. A. King, 'High-peak-power operation of a Q-switched $Tm^{3+}$-doped silica fiber laser operating near $2\;{\mu}m$', Opt. Lett., vol. 28, pp. 22-24, 2003 https://doi.org/10.1364/OL.28.000022
  6. A. Hook and A. Bolle, 'Transient dynamics of stimulated Brillouin scattering in optical communication systems', J. Lightwave Technol., vol. 10, pp. 493-502, 1992 https://doi.org/10.1109/50.134204
  7. H. Li and K. Ogusu, 'Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber', Jpn. J. Appl. Phys., Part 1, vol. 38, pp. 6309-6315, 1999 https://doi.org/10.1143/JJAP.38.6309
  8. M. Sjoberg, M. L. Quiroga- Teixeiro, S. Galt, and S. Hard, 'Dependence of stimulated Brillouin scattering in multimode fibers on beam quality, pulse duration, and coherence length', J. Opt. Soc. Am. B, vol. 20, pp. 434-442, 2003 https://doi.org/10.1364/JOSAB.20.000434
  9. Hojoon Lee. Govind P. Agrawal, 'Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings', Optical Express, vol. 11, no. 25, pp. 3467-3472, 2003 https://doi.org/10.1364/OE.11.003467
  10. K. Ogusu, 'Effect of stimulated Brillouin scattering on nonlinear pulse propagation in fiber Bragg gratings', J. Opt. Soc. Am. B, vol. 17, pp. 769-774, 2000 https://doi.org/10.1364/JOSAB.17.000769
  11. R. W. Boyd and K. Rzooewski, 'Noise initiation of stimulated Brillouin scattering', Phys. Rev. A, vol. 42, pp. 5514-5521, 1990 https://doi.org/10.1103/PhysRevA.42.5514
  12. B.J. Eggleton and C.M. de Sterke, 'Nonlinear pulse propagation in Bragg grating', J. Opt. Soc. Am. B, vol. 14, pp. 2980-2993, 1997 https://doi.org/10.1364/JOSAB.14.002980
  13. J. Brennan III and D. LaBrake, 'Realization of > 10-m-Iong chirped fiber Bragg gratings', in Proc. Bragg Gratings, Photosensitivity, and Poling, OSA, 1999, pp. 35-37