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The method to obtain four speckle patterns with relative phase shift of 7/2 by passive devices
such as two waveplates and a linear polarizer, and to calculate the phase at each point of the speckle
pattern in shearography with a Wollaston prism is described. In this paper, we analyze its potential

error sources caused by wave plates.
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I. INTRODUCTION

Although shearography has many different applications
as a measurement technique, the various methods all
rely ultimately on the measurement of phase. In shear-
ography, this phase measurement is accomplished by
means of fringes. Different methods can be applied for
determining of an interferogram numerically and auto-
matically. These methods can be divided generally into
categories: those which take the phase data sequentially
and those which take the phase data simultaneously [1].
Methods of the first type are known as time-dependent
phase-shifting technique, and those of the second type
are known as spatial phase-shifting technique. There
are many variations of the time-dependent phase-shifting
technique, but for all of them, a temporal phase modulation
{or relative phase shift between the object and reference
beams in an interferometer) is introduced to perform
the measurement. By measuring the interferogram inten-
sity as the phase is shifted, the phase of the wavefront
can be determined with the aid of electronics or a digital
computer. The spatial phase-shifting techniques can be
subdivided into phase stepped methods [2] and spatial
carrier methods [3].

A phase shift or modulation in the phase-shifting
techniques can be induced by moving a mirror, tilting
a glass plate, moving a grating, rotating a half-wave
plate or analyzer [4-7].

Shearography with a Wollaston prism has simple
structure and is robust to large disturbance from the
environment [8,9]. But the shearography has a draw-
back that the application of the phase-shifting technique
is difficult. Recently, to solve the problem, the phase-

shifting technique applied to the shearographic system
with a Wollaston prism has been reported. The technique
uses passive devices such as two wave plates and a
linear polarizer to obtain four speckle patterns with
relative phase shift of 7/2 by passive devices such as
two wave plates and a linear polarizer, and to calculate
the phase at each point of the speckle pattern in
shearography with a Wollaston prism.[10]

As mentioned above, phase shifting interferometry
can be carried out using a variety of arrangements if
we measure the intensity in the interference plane for
different orientations of the polarization components.
However, the errors in the retardation of the phase
plates and their azimuth angle errors will influence the
accuracy of the phase measurement. The influence of
the errors of the retardation and azimuth angle of the
polarization components of a polarization phase shifter
was reported, on the phase measurement, in the phase
shifting interferometry.[6,7] In this paper, the principle
of the shearographic system with Wollaston prism[10]
is described, and its potential error sources are analyzed.

II. PRINCIPLE OF SHAROGRAPHY WITH A
WOLLASTON PRISM

Fig. 1 shows the proposed system, which consists of
two wave plates and one linear polarizer. The proposed
system obtains the shearing image by a Wollaston prism
instead of by the Michelson interferometer. Fig. 1 shows
the operation of a Wollaston prism, which has a net
effect of splitting a ray polarized at 45 degree into two
rays that are out of phase, separated from each other,
and orthogonally polarized to each other.

- 145 -



146 Journal of the Optical Society of Korea, Vol. 9, No. 4, December 2005

The application of a Wollaston prism yields a pair
of laterally sheared images of the investigated object
that is observed in the image plane; i.e., the point P,
on the object’s surface is separated into two points Py’
and P1” in the image plane, and point P, on the objects’s
surface is divided into two points Py and P;” in the
image plane as well. The rays from two points in an
adjusted distance on the object’s surface meet in one
point Pi" and P;” on the image plane. Light waves belong-
ing to points P; and P, interfere in this position on the
image plane. Using the interference of each point in the
image plane yields a speckle interferogram. dz is the
shearing distance in the object’s plane; dz” is the shearing
distance in the image plane. Since the polarizations of
the optical waves that are reflected from points P; and
P», and then pass through the Wollaston prism are ortho-
gonal, two rays orthogonally polarized to each other do
not interfere in the image plane. For fringes to appear,
a polarizer, whose axis is at 45 degree to the polarization
axes of the Wollaston prism, must be placed at the
image plane. Two wave plates are inserted in the proposed
system to generate a phase shift. In this figure, WP1
and WP2 are wave plates, the slow axis of WP1 coincides
with the -x axis and the slow axis of WP2 is rotated
by +45 degree with respect to the -x axis.

The optical waves reflected from the points P; and
P> can be described by the complex exponential functions

b (z,y)
U, ae” 0y
U(Cﬂy) = (Ug) = (GIQe—iG(x-FzSz,y) ’ (1)

where 0(z,y) and 6(z + 5z,y) represent the random
phase relation of the light from points P, (z,y) and
P,(z+ 6z,y), respectively, and a, and a, are the light
amplitudes, which are assumed equal for the two neighboring
points.

After passing through two wave plates, optical waves
reflected from points Py and P2 of Fig. 1 are given by
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FIG. 1. Shearographic system with a Wollaston prism
and two wave plates, and a linear polarizer.
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where the minus and plus signs correspond to the cases
in which the slow axis of WP2 is rotated by 45 degrees
and -45 degrees, respectively, with respect to the -x axis,
and I} and I, are phase retardations of WP1 and
WP2, respectively. After passing through a linear polarizer,
the complex amplitude of optical waves in the image
plane is given by

I
-t T ) I
Upprras = € 2 {COSTZUQ ?iemsin%(fl}. (3)

First, in the case of using two A\/4 plates, since the
phase retardation is I', = I', = 7/2, Eq. (3) results in
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The intensities corresponding to Eq. (4) are given by

L= al)p2+45Up2+45 = f[1+cosg], (5)

]3 = Upr— 45 UmpZ 44 - 10 [1 + 'YCOS (d) + W)] 9 (6>

(a2 +a3)/2 is the mean value of the intensity
v = 2a,a,/ (af +a2) is the
modulation of the interference term, and ¢ = 6, — 8,

where [ =

(background brightness b),

is the random phase difference.

Second, when the slow axes of WP1 and WP2 are
rotated at 0 and 45 degrees (or -45 degrees) with respect
to the -x axis, respectively, the complex amplitude of
optical waves after passing through a linear polarizer
(which is rotated at 45 or -45 degrees) are given by,
respectively,

L iy
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In which case in which I'; = I', = 7/2, the intensities
corresponding to Eqgs. (7) and (8) are given by

i x —
L= UsssUprss™ =

P

L= U, 45U,

L1+ ycos (p+37/2)], (9)
L1+ ~ycos (p+7/2)]. (10)

I}

From Egs. (5), (6), (9), and (10), we can obtain four
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intensity patterns with relative phase shift of /2
using two wave plates and a linear polarizer. Using
combination of A/2 plate and A/4 plate, we can also
obtain four intensity patterns with relative phase shift
of 7/2. In the case in which I} = &, I, = 7/2, the

intensity corresponding to Eq. (3) results in

V2

—Ti{UQiiUl}. (11)
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The intensities corresponding to Eq. (11) are given by

L= UpiggUpiss™ = L1 +rycos (¢+37/2)], (12)
L= Up2_45Up2_45* = L[l +~cos (p+7/2)]. (13)

Second, when the slow axes of WP1 and WP2 are
rotated at 0 and 45 degrees (or -45 degrees) with respect
to -x axis, respectively, the complex amplitudes of
optical waves after passing through a linear polarizer
(which is rotated at 45 or -45 degrees) are given by
Egs. (7) and (8), respectively. In which case in which
I'i = m, I'h = m/2, the intensities corresponding to
Egs. (7) and (8) are given by

L= UyyssUpyas™ = L[1+~ycos (p+m)l, (14)
L= U,_;5U,_;5*= L[1+vycosd]. (15)

From mentioned above, we see that we can obtain
four speckle patterns with relative phase shift of 7/2
by combination of two A/4 plates and a linear polarizer,
or A\/2 plate and A\/4 plate, and a linear polarizer.
From four intensity patterns, we can calculate the phase
at each point of the speckle interferogram, as follows:

— I
¢ = arctan 514 2)

——]1_[3). (16)

IoI. PHASE ERROR ANALYSIS

The main potential sources of error in the technique are
imperfections of the polarization elements and azimuth
angle error of the polarization elements. We shall analyze
the effects of these potential error sources one by one.

1. Imperfections of the polarization elements

We shall deal mainly with the errors that are introduced
by imperfections in the \/2 plate and /4 plate. In this
case, we assume that the azimuth angle error of wave
plates is zerc. In Fig. 1, the Jones matrix of output beam
in the output plane [11] is given by

Eyu= A(ps) WP2 (02) WPL () B, (17)

where E|

i

represents input optical wave, and A (¢;),

WP2(p 2), WP1(p 1) represent Jones matrices of a polar-
izer, WP2, and WP1, respectively. The Jones matrices
of polarization components are given by, respectively,

-
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E,=
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2
where i=1,2 and WPi represents the Jones matrix for
WP1 and WP2. ¢ 3, ¢ 2, ¢ 1 represent the azimuth angle
of a linear polarizer, WP2, and WP1, respectively.

1.1 The case of two )\/4 plates

The phase error introduced by imperfections in the
A/4 plate can be obtained from four intensity patterns
as follows.

(1) Intensity for @3=0, ¢2=n/4, ¢1=0

I
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2
L= a

sin(p+ I). (21)

(2) Intensity for 03=n/4, @2=n/4, 01 =0
L = 1/2[(a? + a2) + 2a,a5cos (p+I'))].  (22)

(3) Intensity for ¢3=0, Q2= /4, ¢ =0

. I
_ 2 22 2 . 272
I; = ajcos 5 + a3sin 5

Iy Iy
—2a1a2c0575in781n(¢+ ry). (23)

(4) Intensity for @3 = /4, @2=7n/4, ¢1 =0
I, = 1/2[(a® + a2) — 2a,a5cos (p+ 1)), (24)

From Eq. (16) and Egs. (21) ~(24), the phase difference
¢ of optical waves U5 and U is given by

L— 14 —cos (¢p+I')

tang’ = L— 5 - sinIysin(p+ I7)’ (29)

where ¢ includes the error introduced by wave plates.
For a nonideal \/4 plates we have

Iy =n/2+7, (26)
Iy =m/2+ 7, (27)
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where <y, and +, are the errors in the relative retardation

introduced by two /4 plates. Substituting Eqs. (26)
and (27) into Eq. (25), we obtain

7

tan ¢ + y,;sec’e
tang = —————

1-1/24; (28)

Since
tang’ = tan(¢p+ A¢) =~ tang+ Asec’sp, (29)

we can calculate the error from Egs. (28) and (29) as
follows:

A = v +1/4sin(2¢)7. (30)

The first-order error in Eq. (30) is constant and will
vanish in determining the phase differences. Hence, the
error in measurement is of second order.

1.2 The case of \/2 plate and \/4 plate

The phase error introduced by imperfections in the
A/2 plate and A\/4 plate can be obtained from four
intensity patterns as follows.

(1) Intensity for @3 =0, 02 =7/4, 0, =0

FQ
2

2 . 2F‘2
+a3sin®——

2 2
L, = ajcos 5

Iy I,
+2a1a2c08781n7sln(¢+51), (31)

where §; and I', are phase retardations of WP1 and WP2,
respectively.

(2) Intensity for @3 = 7/4, @3 =7/4, ©; =0
L= 1/2[(a} +a3)+2a,a5c08 (6 +6,)].  (32)

(3) Intensity for ¢3=0, g2=-7/4, 01 =0

I I
L = a%cosZTZ—% a%sin2—22—

I, Iy
~ 2005008 - sin—- sin(p+4,). (33)

(4) Intensity for @3 = 7/4, 02 = /4, 1 =0
L= 1/2[(a} + a3) — 2a,a5c0s (p+6,)].  (34)

From Egs. (16), (29) and Egs. (31) ~(34), the phase
error is given by

Ap=~v—1/4sin(2¢)73, (35)

where « and ~y, are the errors in the relative retardation

introduced by A/2 plate and A/4 plate, respectively.
The first-order error in Eq. (35) is constant and will
vanish in determining the phase differences. Hence, the
error in measurement is of second order.

2. Azimuth angle Error
We shall deal with the errors that are introduced by

the azimuth angle error in the A\/2plate and \/4 plate.
In this case, we assume that wave plates are ideal.

2.1 The case of two \/4 plates
2.1.1 Phase error by the azimuth angle error of WP1
In discussing the azimuth angle error we assume that

the azimuth angle errors of all polarization elements are
zero except WP1.

(1) Intensity for @2=m/4, 03=0

I = %G-zz(l — sin2gpy ) + '.5‘“12(1 + sin2ep; )
+ a,aycospcos2p, (36)

(2) Intensity for ©»= /4, ¢3=-n/4

[y

L= = {(ai+ al) — aja,c08¢ + aja,cos¢ (cos 2, — sin2¢,)

— (af — af)sin2¢ycos2yy — 2a,ay8in0 052, ). (37)

(3) Intensity for @ :—7r/4, ©3=20

L = é—a%(l-}- sin2¢, ) + %af(l— $in2¢,)

— 105 C0S ) CcOS20,; . (38)

(4) Intensity for @:=n/4, ¢3=n/4

I = ]—)\(a)' I al) | ajuycosd | a,a,c08¢ (sin 29 — cos2¢,)

+ (a5 — o) sin2p, cos2¢, + 2a,assind cosdp, ) . (39)

From Eq. (16) and Egs. (36) ~(39), the phase diffe-
rence ¢’ of optical waves U; and U is given by

%— oS — % cospcost g — % cot2 Bsindp, + singcos2p,
col2Bsin2 p| + cospcos2y, 3 (40)

tang =

where cot28 = (a’— a3)/2a,a,. In the case of two \/4
plates, we assume that azimuth of WPl is ¢ ;1 = 0+¢,
and ¢, represents the azimuth angle error in WP1.
Substituting ¢ 1 = 0+ ¢; into Eq. (40), we obtain the
phase error as
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A¢= —2cot2B3(cosp+ sing)e;. (41)
2.1.2 Phase error by the azimuth angle error of WP2

In discussing the azimuth angle error we assume that
the azimuth angle errors of all polarization elements
are zero except WP2. In an analogous treatment to
that used earlier, we obtain the phase error as

A¢ = (2cot2fBcos ¢+ cos’¢+ 1)ey— sin2¢€'2, (42)

where ¢, and 6,2 represent the azimuth angle errors in
WP1 for @2 = 7/d+ ¢ and @ =—n/4+ 6,2 .

2.1.3 Total phase error by the azimuth angle error of two
A/ 4 plates

Total phase error including WP1 and WP2 is written by
A¢p = —2cot2B(cos¢p+ sing)e,
+ (2cot2Bcos g+ cosp+ 1)e, —sin’pe,. (43)

If a; = ay, then cot23 = 0. In this case

Ad = (cos®d+ 1)e,— Sin2¢e’2. (44)

From Eq. (44), A¢ is indenpent of €;, we can conclude

that, in this case, the azimuth angle error in \/4 plate
(WP1) has no effect on the measurement of phase (up
to the first order).

2.2 The case of \/2 plate (WP1) and \/4 plate (WP2)
2.2.1 Phase error by the azimuth angle error of WP1

In discussing the azimuth angle error we assume that
the azimuth angle errors of all polarization elements
are zero except WP1.

(1) Intensity for @ = 7/4, ¢3=0

1
I = %a?-k 5a§+ a,ay5in¢. (45)

(2) Intensity for @o = /4, @3=-7/4

I = %{( 24 ag)— <a§—af)sin4¢1

— 2a,a,co8 ¢pcosde, }. (46)

(3) Intensity for @» =-m/4, ¢3=0

1
L= Sai+

5 laé— (1058100 (47)

2

(4) Intensity for @y = /4, @3 = n/4
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]_ 5 bl R4 3 .
L= L (a2 + ) + (a} — o} ) sintp,
— 20, ayco8¢cosd @, |, (48)

From Eq. (16) and Egs. (45)~(48), the phase difference
¢ of optical waves Uj and U: is given by

s
cot2Bsind g, 4+ cospcosdyp, . (49)

tan ¢ =

In the case of \/2 plate and \/4 plate, we assume that
azimuth of WP1 is ¢ 1 = 0+ ¢, and €, represents the
azimuth angle error in WP1. Substituting ¢ 1 = 0+ ¢,
into Eq. (49), we obtain the phase error as

A¢p = —4cot2Fsinge;. (50)
2.2.2 Phase error by the azimuth angle error of WP2

Phase error by the azimuth of WP2 is identical with
that derived in the section 2.1.2.

2.2.3 Total phase error by the azimuth angle error of \/2
plate and )\/4 plate

Total phase error including WP1 and WP2 is written by

A¢ = — 4cot2fsinge, + (2cot2Bcos ¢
+cos?p+ l)eg—sinQQSe;. (651)

If a1 = a4, then cot2¢= 0. In this case
A¢ = (cos®p + 1)e, —sin’de,. (52)

From Eq. (52), A¢ is indenpent of €, we can conclude that,
in this case, the azimuth angle error in \/2 plate (WP1)
has no effect on the measurement of phase (up to the
first order).

TIV. Conclusion

In this paper, we described the principle and the theory
of the method to obtain four speckle interferograms with
relative phase shift of A\/2 by passive devices such as
two wave plates and a linear polarizer.

We also analyzed the potential errors of the system.
The retardation errors of the wave plates do not influence
the measured value of phase differences up to first order.
Under the condition of equality of the amplitudes of the
interfering beams, which are easily achieved, the azimuth
angle error of WP1 does not influence the measured
value of phase differences up to first order.

This work has been supported by KESRI (04-522), which
is funded by MOCIE (Ministry of commerce, industry and
energy).

Corresponding author : sgkim@office.hoseo.ac.kr



150

1]

2l

[5]

Journal of the Optical Society of Korea, Vol. 9, No. 4, December 2005

REFERENCES

D. W. Robinson and G. T. Reid, Interferogram analysis-
digital fringe pattern measurement techniques, Institute
of Physics Publishing 1993, Chaps. 4 and 5.

O. Y. Kwon and D. M. Shough, “Multichannel grating
phase-shift interferometry,” Proc SPIE, vol. 599, pp.
273-279, 1985.

T. Kreis, “Digital holographic interference-phase measure-
ment using the Fourier-transform method,” J. Opt. Soc.
Am A, vol. 3, pp. 847-855, 1986.

W. H. Stevenson, “Optical frequency shifting by means
of a rotating diffraction grating,” Appl. Opt, vol. 9, pp.
649-652, 1970.

R. N. Shagam and J. C. Wyant, “Optical frequency
shifter for heterodyne interferometers using multiple
rotating polarization retards,” Appl. Opt, 17, 3034-3035,
1978.

[6] M. P. Kothiyal and C. Delisle, “Polarization component

[7]

(8]

[10]

[11]

phase shifters in phase shifting interferometry: error
analysis,” Optica Acta vol. 33, pp. 787-793, 1986.

H. Z. Hu, “Polarization heterodyne interferometry using
a simple roattaing analyzer. 1: theory and error analysis,”
Appl. Opt. vol. 22, pp. 2052-2056, 1083.

Y. Y. Hung, “Shearography fo non-destructive evaluation
of composite structures,” Optics and Lasers in Engineering
vol. 24, pp. 161-182, 1996.

S. Dilhaire, S. Jorez, A. Cornet, L.D. Patino Lopez, W.
Claeys, “Measurement of the thermomechnical strain of
electronic devices by shearography,” Microelectronics
Reliability vol. 40, pp. 1509-1514, 2000.

S.-G. Kim “Polarization phase-shifting technique in
shearographic system with a Wollaston prism,” J. Opt.
Soc. Korea, vol. 8, pp. 122-126, 2004.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley,
New York, 1984), Chap. 5.



