Fuzzy equivalence relations and transformations

Yong Chan Kim and Young Sun Kim

Department of Mathematics, Kangnung National University, Gangwondo, Korea Department of Applied Mathematics, Pai Chai University, Dae Jeon, Korea

Abstract

We investigate the properties of A-transformations, P-transformations and L-transformations in metric spaces, t-norms and T-fuzzy equivalence relations.

Key Words: A-transformations, P-transformations, L-transformations, (quasi-, psudo-) metric spaces, t-norms, T-fuzzy (quai-) equivalence relations.

1. Introduction and Preliminaries

The concept of fuzzy equality [1-4], which is also called the equality relation, the fuzzy equivalence relation, the similarity relation[5,12], the indistinguishability operator[7,11], has a significant concern in various fields[6,10]. It is a graded equality being generalization of the classical equality. We understand two objects to be approximately equal if they are similar. The degree 0 means that objects are completely different and the degree 1 means that objects are indistinguishable.

In this paper, we investigate the properties of A-transformations, P-transformations and L-transformations in metric spaces, t-norms and T-fuzzy equivalence relations. We construct metrics by A-transformations. From A-(resp. P-, L-transformations, we compare t-norms generated by A-(resp. P-, L-) generators. In particular, we investigate the relationship between T-fuzzy quasi-equivalence relations and A-(resp. P-, L-) transformations.

A binary operation $T:[0,1]\times[0,1]\to[0,1]$ is called a t-norm if it satisfies the following conditions:

for each $x, y, z \in [0, 1]$,

- (T1) T(x, y) = T(y, z),
- (T2) T(x, T(y, z)) = T(T(x, y), z)
- $(T3) \quad T(x,1) = x,$
- (T4) if $y \le z$, then $T(x, y) \le T(x, z)$.

We denote $T(x, y) = x \odot y$. A t-norm T_1 is called weaker than a t-norm T_2 (T_2 is called stronger than a t-norm T_1 , denoted by $T_1 \le T_2$, if $T_1(x, y) \le T_2(x, y)$.

An increasing function $f:[0,1] \rightarrow [0,1]$ is called a P-generator if $T_f(x,y) = f^{-1}(f(x)f(y) \lor f(0))$ is a t-norm.

A strictly decreasing $g:[0,1] \rightarrow [0,\infty]$ is called an A-generator if $T_g(x,y) = g^{-1}((g(x)+g(y)) \land g(0))$ is a t-norm.

A bijective increasing $k[0,1] \rightarrow [0,1]$ is called an

L-generator if $T_h(x, y) = h^{-1}((h(x) + h(y) - 1) \land 0)$ is a t-norm.

Theorem 1.1 [9] If T is an Archimedean t-norm, then there is an increasing continuous $f[0,1] \rightarrow [f(0),1]$ such that $x \odot y = f^{-1}(f(x)f(y) \vee f(0))$ for all $x, y \in [0,1]$. If $g[0,1] \rightarrow [g(0),1]$ is an order isomorphism, then $x \odot y = g^{-1}(g(x)g(y) \vee g(0))$ for all $x, y \in [0,1]$ iff f(x) = g(x) for some r > 0.

Theorem 1.2 [8] If T is an Archimedean t-norm, then there is a strictly decreasing continuous function $f:[0,1] \rightarrow [0,\infty]$ such that $x \odot y = f^{-1}((f(x) + f(y)) \land f(0))$ for all $x, y \in [0,1]$. If $g:[0,1] \rightarrow [0,\infty]$ is an order reversing continuous function, then $x \odot y = g^{-1}((g(x) + g(y)) \land g(0))$ for all $x, y \in [0,1]$ iff f(x) = ag(x) for some a > 0.

Theorem 1.3 [9] If T is an Archimedean nilpotent t-norm, then there is a bijective continuous function $h[0,1] \rightarrow [0,1]$ with $x \odot y = h^{-1}((h(x) + h(y) - 1) \lor 0)$ for all $x, y \in [0,1]$.

Definition 1.4 A mapping $dX \times X \rightarrow [0, \infty]$ is called a quasi-metric if it satisfies the following conditions: for each $x, y, z \in X$,

 $(M1) \quad d(x,x) = 0,$

(M2) $d(x, z) \le d(x, y) + d(y, z)$.

A quasi-metric d on X is called a pseudo-metric on X if it satisfies:

(M3) d(x, y) = d(y, x), for each $x, y \in X$.

A pseudo-metric d on X is called a metric on X if it satisfies:

(M) if d(x, y) = 0 for each $x, y \in X$, then x = y.

2. Metrics, t-norms and transformations

Definition 2.1 An increasing map $s:[0,b] \rightarrow [0,\infty]$ is called an A-transformation if it is sub-additive ,i.e. $s(x) + s(y) \ge s(x + y)$ and s(0) = 0.

Manuscript received Nov. 15, 2005; revised Nov. 29, 2005.

Lemma 2.2 A map $s[0, b] \rightarrow [0, \infty]$ with s(0) = 0 is an A-transformation iff for all $x, y, z \in [0, b]$ with $x + y \ge z$, we have $s(x) + s(y) \ge s(z)$

Proof. Let s be an A-transformation. Then for all $x, y, z \in [0, b]$ with $x + y \ge z$, $s(x) + s(y) \ge s(x + y) \ge s(z)$ Put z = x + y. Then $s(x) + s(y) \ge s(z) = s(x+y)$. If $x + 0 \ge y$, then $s(x) = s(x) + s(0) \ge s(y)$ Thus, s is an increasing map.

Theorem 2.3 (1) If $d: X \times X \rightarrow [0, \infty]$ is a quasi-metric (resp. pseudo-metric) and $g[0, b] \rightarrow [0, \infty]$ is Atransformation, then $e = s \cdot d$ is a quasi-metric pseudo-metric).

(2) If $dX \times X \rightarrow [0, \infty]$ is a metric and $s[0, b] \rightarrow [0, \infty]$ is A-transformation such that s(x) > 0 for all $0 < x \le 1$, then $e = s \cdot d$ is a metric.

Proof. (1) Since $d(x, z) \le d(x, y) + d(y, z)$, $e(x, z) = s(d(x, z)) \le s(d(x, y)) + s(d(y, z)) = e(x, y) + e(y, z).$ (2) e(x, y) = 0 iff s(d(x, y)) = 0 iff d(x, y) = 0 iff x = y.

Example 2.4 Let $s:[0,\infty) \rightarrow [0,\infty]$ a map defined as $s(x) = a \land x$ for a > 0. s is A – transformation because $s(x+y) = a \wedge (x+y) \le (a \wedge x) + (a \wedge y) = s(x) + s(y)$ Let d be a metric. Then $e(x, y) = s(d(x, y)) = a \wedge d(x, y)$ is a metric.

Example 2.5 Let $s[0,\infty) \rightarrow [0,\infty]$ a map defined as $s(x) = x^{p}$, $0 \le p \le 1$. Put $h(t) = (t+1)^{p} - t^{p} - 1$. Since $h'(t) = p(t+1)^{p-1} - pt^{p-1} \le 0$ for all $t \ge 0$ and h(0) = 0, then $h(t) = (t+1)^{p} - t^{p} - 1 \le 0$. Put $t = \frac{y}{x}$. It follows $(x+y)^{p} \le x^{p} + y^{p}$ Thus s is A-transformation. Let d be a metric. Then $e(x, y) = s(d(x, y)) = d^{p}(x, y)$ for all $0 \le p \le 1$ is a metric.

Example 2.6 Let $s[0,\infty) \rightarrow [0,\infty]$ a map defined as $s(x) = \frac{px}{x+1}$, p > 0. Since $\frac{p(x+y)}{x+y+1} \le \frac{px}{x+1} + \frac{py}{y+1}$ Thus s is A-transformation. Let d is a metric.

Then $e(x, y) = s(d(x, y)) = \frac{pd(x, y)}{1 + d(x, y)}$ for all p > 0 is a metric.

Example 2.7 Let $s[0,\infty) \rightarrow [0,\infty]$ a map defined as $s(x) = \ln(x+1)$. Since $\ln(x+y+1) \le \ln(x+1) + \ln(y+1)$ then s is A-transformation. Let d is a metric. $e(x, y) = s(d(x, y)) = \ln(1 + d(x, y))$ is a metric.

Theorem 2.8 Let $f, g: [0,1] \rightarrow [0,\infty]$ be an A-generators. Then gf^{-1} is A-transformation iff $T_f \ge T_g$.

Proof. Let $gf^{-1}(a+b) \le gf^{-1}(a) + gf^{-1}(b)$ be given. Put $f^{-1}(a) = x$ and $f^{-1}(b) = y$. $gf^{-1}(f(x)+f(y)) \le g(x)+g(y).$

Since g^{-1} is decreasing and f(x) + f(y) > f(0) implies $T_{f}(x, y) = f^{-1}((f(x) + f(y)) \land f(0))$

$$\geq g^{-1}((g(x)+g(y)) \wedge g(0)) = T_g(x,y).$$

Conversely, it is similarly proved.

Example 2.9 (1) Let $s(x) = x^{p}$, 0 be <math>A - ptransformation. Put $gf^{-1}(x) = s(x) = x^{p}$ and f(x) = 1 - x. Then $T_{p}(x, y) = (x + y - 1) \lor 0$ and $g(x) = (1 - x)^{p}$. We

 $T_{\sigma}(x,y) = \{1 - ((1-x)^{p} + (1-y)^{p})^{\frac{1}{p}}\} \lor 0.$

(2) Let $s(x) = \frac{px}{x+1}$, p>0 be A-transformation. Put

 $gf^{-1}(x) = \frac{px}{x+1}$ and f(x) = 1-x. Then

 $T_f = (x+y-1) \lor 0$ and $g(x) = \frac{p(1-x)}{2-x}$. We obtain

 $T_g(x,y) = \frac{xy}{2-x-y+xy} .$

(3) Let $f, g:[0,1] \rightarrow [0,\infty]$ be mappings defined by

 $f(x) = \frac{1}{x} - 1$, $g(x) = -\ln x$. Then we obtain $A - \ln x$

transformation $g(f^{-1}(x)) = \ln(x+1)$. Then

$$T_{s}(x, y) = \frac{xy}{x + y - xy} \ge xy = T_{g}(x, y).$$

Definition 2.10 A non-decreasing map $h[a,1] \rightarrow [0,1]$ for some $a \in [0,1)$ is called P-transformation if it satisfies $h(xy) \ge h(x)h(y)$ and h(1) = 1.

Lemma 2.11 A map $k[a,1] \rightarrow [0,1]$ for some $a \in [0,1)$ with h(1) = 1 is P-transformation iff $x, y, z \in [a, 1]$ with $xy \le z$, we have $h(x)h(y) \le h(z)$.

Proof. Let h be P-transformation. Then for all $x, y, z \in [a, 1]$ with $xy \le z$, $h(x)h(y) \le h(xy) \le h(z)$ Put z = xy. Then $h(x)h(y) \le h(z) = h(xy)$. If $x1 \le y$, then $h(x) = h(x)h(1) \le h(y)$. Thus, h is a non-decreasing map.

Theorem 2.12 Let T_f and T_g be a t-norm with Pgenerators f and g. Then gf^{-1} is P-transformation iff $T_f \ge T_{\sigma}$.

Proof. Let $gf^{-1}(ab) \ge gf^{-1}(a)gf^{-1}(b)$ be given. Put $f^{-1}(a) = x$ and $f^{-1}(b) = y$. $gf^{-1}(f(x)f(y)) \ge g(x)g(y)$. Since g is strictly increasing and $f(x)f(y) \le f(0)$ implies $g(0) \ge gf^{-1}(f(x)f(y)) \ge g(x)g(y),$ $T_{f}(x, y) = f^{-1}(f(x)f(y) \lor f(0))$

 $\geq g^{-1}((g(x)g(y)\vee g(0)) = T_g(x,y).$

Example 2.13 Let $gf^{-1}:[0,1] \rightarrow [0,1]$ be a map defined as $gf^{-1} = a^{x-1}$, a > 1. Then $gf^{-1}(x)gf^{-1}(y) \le gf^{-1}(xy)$. Put f(x) = x. Then $g(x) = a^{x-1}$ and $g^{-1}(x) = (\log_a x) - 1$. We obtain

 $T_g(x, y) = g^{-1}(g(x)g(y) \lor g(0)) = (x+y-1) \lor 0.$ $T_{\rho}(x, y) = xy \ge T_{\rho}(x, y)$.

Definition 2.14 A nondecreasing map $k[0,1] \rightarrow [0,1]$ is called an L-transformation if it satisfies $h(x+y-1) \ge h(x) + h(y) - 1$ with h(0) = 1 and h(0) = 0. **Lemma 2.15** A map $h[0,1] \rightarrow [0,1]$ with h(0) = 1 and

h(0) = 0 is an L-transformation iff for all $x, y, z \in [0, 1]$ with $x + y - 1 \le z$, we have $h(x) + h(y) - 1 \le h(z)$.

Proof. Let h be an L-transformation. Then for all $x, y, z \in [0, 1]$ with $x+y-1 \le z$,

$$h(x) + h(y) - 1 \le h(x + y - 1) \le h(z)$$

Put z = x + y - 1. Then

$$h(x) + h(y) - 1 \le h(z) = h(x+y-1).$$

If $x+1-1 \le y$, then $h(x) = h(x) + h(1) - 1 \le h(y)$. Thus, h is a non-decreasing map.

Theorem 2.15. Let T_f and T_g be a nilpotent t-norm with L-generators f and g.

Then gf^{-1} is L-transformation iff $T_f \ge T_g$.

Proof. It is similarly proved as in Theorem 2.12.

Example 2.16 Let gf^{-1} : $[0,1] \rightarrow [0,1]$ be a map defined as $gf^{-1}(x) = x^n$, $n \in \mathbb{N}$.

Put $h(x, y) = (x + y - 1)^n - x^n - y^n + 1$. Then (1,1) is a saddle point because

$$h_x(1,1) = h_y(1,1) = 0$$
, $h_{xx} = h_{yy} = 0$, $h_{xy} = n(n-1)$
If $n = 2m$, since $h(x,0)$ and $h(0,y)$ are decreasing with $h(1,0) = h(0,1) = 0$ and $h(1,x) = h(y,1) = 0$. Hence $h(x,y) \ge 0$.

If
$$n=2m+1$$
, since $h'(\frac{1}{2},0) = h'(0,\frac{1}{2}) = 0$ with $h(0,0) = h(1,0) = h(0,1) = 0$ and $h(\frac{1}{2},0) = h(0,\frac{1}{2}) = 1 - 2(\frac{1}{2})^{2m+1} \ge 0$.

Hence $h(x, y) \ge 0$.

So,
$$gf^{-1}(f(x)+f(y)-1) \le g(x)+g(y)-1$$
.

Put f(x) = x. Then $g(x) = x^n$. We obtain

$$T_g(x, y) = (x^n + y^n - 1) \lor 0)^{\frac{1}{n}}$$
. Furthermore,
 $T_g(x, y) = 0 \lor (x + y - 1) \ge T_g(x, y)$.

3. T-fuzzy equivalence relations

Definition 3.1[1-4] A map $E: X \times X \rightarrow [0,1]$ is called a T-fuzzy quasi-equivalence relation on X if the following properties hold:

- (E1) E(x, x) = 1, for each $x \in X$.
- (E2) $T(E(x, y), E(y, z)) \le E(x, z)$, for each $x, y, z \in X$

A T- fuzzy quasi-equivalence relation is called a T- fuzzy equivalence relation on X if it satisfies:

(E3) E(x, y) = E(y, x), for each $x, y \in X$.

A T- fuzzy equivalence relation is called a T- fuzzy equality on X if it satisfies:

(E) if E(x, y) = 1 for each $x, y \in X$, then x = y.

Let E_1 , E_2 be T- fuzzy quasi-equivalence relations on X . Then E_1 is called coarser than E_1

if $E_1(x, y) \le E_2(x, y)$ for each $x, y \in X$.

Remark 3.2 (1) If a t-norm T_1 is weaker than a t-norm

 T_2 , then a T_2 -fuzzy (quasi-)equivalence E on X is a T_1 -fuzzy (quasi-)equivalence E on X. Thus, \wedge -fuzzy (quasi-)equivalence E on X is a T-fuzzy (quasi-)equivalence E on X because $T(x,y) \leq x \wedge y$ for every t-norm T.

(2) The condition (E2) is equivalent to the following condition: for each distinct $x, y, z \in X$,

(E2-1) $T(E(x, y), E(y, z)) \le E(x, z)$.

Theorem 3.3 Let E be a T-fuzzy quasi-equivalence relation on X. Then:

(1) if $a \in (0,1)$, then $G(x,y) = E(x,y) \lor a$ for all $x,y \in X$, then G is a T-fuzzy quasi-equivalence relation on X.

(2) If $E^{-1}(x, y) = E(y, x)$ for all $x, y \in X$, then

 $F(x, y) = T(E(x, y), E^{-1}(x, y))$ is G-fuzzy equivalence relation on X, for any t-norm G such that $G \le T$.

(3) $F(x, y) = E(x, y) \wedge E^{-1}(x, y)$ is the finest T-fuzzy equivalence relation on X which is coarser than E and E^{-1} .

Proof. (1)

T(G(x, y), G(y, z))

 $= T(E(x, y) \lor a, E(y, z) \lor a)$

 $= T(E(x, y), E(y, z)) \lor T(E(x, y), a) \lor T(a, E(y, z)) \lor T(a, a)$

 $\leq T(E(x, y), E(y, z)) \vee a$

 $\leq E(x,z) \vee a = G(x,z)$.

(2)

G(F(x, y), F(y, z))

 $\leq G(T(E(x, y), E(y, x)), T(E(y, z), E(z, y)))$

 $\leq T(T(E(x,y),E(y,x)),T(E(y,z),E(z,y))$

= T(T(E(x, y), E(y, z)), T(E(z, y), E(y, x)))

= T(T(E(x, y), E(y, z)), T(E(z, y), E(y, x)))

= T(E(x, z), E(z, x)) = F(x, z).

(3) For $T = \wedge$ in (2), it is easy. If $H \le E$ and $H \le E^{-1}$, then $H \le F = E \wedge E^{-1}$.

In above theorem, $E_1 \lor E_2$ cannot be T-fuzzy quasi-equivalence relation on X, in general.

Example 3.4 Let $X = \{x, y, z\}$ be a set. and Define E_1, E_2

$$E_1(x, x) = E_1(y, y) = E_1(z, z) = 1$$

$$E_1(x, y) = E_1(y, x) = 0.4$$
, $E_1(x, z) = E_1(z, x) = 0.8$

 $E_1(y,z) = E_1(z,y) = 0.4$

 $E_2(x,x) = E_2(y,y) = E_2(z,z) = 1$

$$E_2(x, y) = E_2(y, x) = 0.6$$
, $E_2(x, z) = E_2(z, x) = 0.3$

 $E_2(y,z) = E_2(z,y) = 0.3$.

Then E_1 and E_2 are \wedge -fuzzy quasi-equivalence relations on X. We can obtain $E_1 \vee E_2$ on X as follows

$$E_1 \lor E_2(x, x) = E_1 \lor E_2(y, y) = E_1 \lor E_2(z, z) = 1$$

$$E_1 \lor E_2(x, y) = E_1 \lor E_2(y, x) = 0.4$$

$$E_1 \lor E_2(x,z) = E_1 \lor E_2(z,x) = 0.8$$

$$E_1 \lor E_2(y, z) = E_1 \lor E_2(z, y) = 0.4$$
.

But $E_1 \lor E_2$ is not a \land -fuzzy quasi-equivalence relations on X because

 $0.4 = (E_1 \lor E_2)(y, z) \ngeq (E_1 \lor E_2)(y, x) \land (E_1 \lor E_2)(x, z) = 0.6$. For all $x, y \in [0, 1]$,

Theorem 3.5 Let E be a T_f -fuzzy equivalence relation on X where T_f is a Archimedean t-norm with A-generator f and $\phi:[0,1] \rightarrow [0,1]$ an increasing function with $\phi(1) = 1$. Then the following statements are equivalent:

- (1) $\phi \circ E$ is a T_f -fuzzy equivalence relation on X.
- (2) $T_{a}(\phi(a), \phi(b)) \le \phi(c)$ for $T_{a}(a, b) \le c$.
- (3) $f(\phi(a)) + f(\phi(b)) \ge f(\phi(c))$ for each $f(a) + f(b) \ge f(c)$
- (4) There exists an A-transformation s such that $s = f \circ \phi \circ f^{-1}$.

Proof. (1) \Rightarrow (2). Let E(x, y) = a, E(y, z) = b, E(x, z) = c. Since E is a T_f -fuzzy equivalence relation, $T_f(a, b) \le c$. We have $T_f(\phi(a), \phi(b)) \le \phi(c)$.

 $(2 \Rightarrow (3)$. Let $f(a) + f(b) \ge f(c)$ be given.

If $f(a) + f(b) > f(0) \ge f(c)$, then $T(a, b) \le c$.

If $f(0) \ge f(a) + f(b) \ge f(c)$, then $T_a(a, b) \le c$

Thus $T_{a}(a, b) \le c$. By (2),

 $T_{f}(\phi(a), \phi(b)) = f^{-1}(f(\phi(a)) + f(\phi(b)) \wedge f(0)) \le \phi(c).$

If $f(\phi(a)) + f(\phi(b)) > f(0)$, since $f(0) \ge f(\phi(c))$, $f(\phi(a)) + f(\phi(b)) \ge f(\phi(c))$

If $f(\phi(a)) + f(\phi(b)) \le f(0)$, $f(\phi(a)) + f(\phi(b)) \ge f(\phi(c))$.

(3) \Rightarrow (4). By (3), put f(a) = x, f(b) = y, f(c) = z,

and $s = f \circ \phi \circ f^{-1}$. For each $x + y \ge z$, we have

 $s(x) + s(y) \ge s(z)$, s(0) = 0 and s is increasing. Hence s is an A-transformation.

(4) \Rightarrow (1). Let $\phi = f^{-1} \circ s \circ f$ with an A-transformation s, then ϕ is an increasing map with $\phi(1) = 1$. We will show $\phi \circ E$ is T_f fuzzy equivalence relation on X. So $\phi(E(x,x)) = \phi(1) = 1$. Since

 $T_{f}(a, b) = f^{-1}(f(a) + f(b) \land f(0)) \le c$, we can prove two cases (A) $f(a) + f(b) \le f(0)$ (B) f(a) + f(b) > f(0).

(Case A) If $f(a) + f(b) \le f(0)$, then $f(a) + f(b) \ge f(c)$

(I) If $f(\phi(a)) + f(\phi(b)) \le f(0)$, then

 $T_{a}(\phi(a),\phi(b))$

 $= f^{-1}(f(\phi(a)) + f(\phi(b)) \wedge f(0))$

 $= f^{-1}(f(f^{-1} \circ s \circ f(a)) + f(f^{-1} \circ s \circ f(b)))$

 $= f^{-1}(s \circ f(a) + s \circ f(b))$

 $\leq f^{-1}(s(f(a)+f(b)))$

 $\leq f^{-1}(s \circ f(c)) = \phi(c)$.

(II) If $f(\phi(a)) + f(\phi(b)) > f(0)$, then $T(\phi(a), \phi(b)) = 0$ (Case B) If f(a) + f(b) > f(0), then

(I) If s(f(a)) > f(0) or s(f(b)) > f(0), then $f^{-1} \circ s \circ f(a) = 0$ or $f^{-1} \circ s \circ f(b) = 0$. Thus,

 $0 = T_{s}(\phi(a), \phi(b)) \le \phi(c)$

(II) If $s(f(a)) \le f(0)$ and $s(f(b)) \le f(0)$, we prove similarly as (I) in (Case A).

Theorem 3.6 Let E be a T_f -fuzzy equivalence relation on

X where T_f is a Archimedean t-norm with A-generator f and $\phi:[0,1] \rightarrow [0,1]$ an increasing function with $\phi(1) = 1$. For all $x, y \in [0,1]$,

 $\phi(T_f(x,y)) \ge T_f(\phi(x),\phi(y))$ iff $\phi \circ E$ is a T_f -fuzzy equivalence relation on X.

Proof. (\Rightarrow). For each $T_{f}(a, b) \le c$, $\phi(c) \ge \phi(T_{f}(a, b)) \ge T_{f}(\phi(a), \phi(b))$.

By Theorem 3.5(2), $\phi \circ E$ is a T_f -fuzzy equivalence relation. (\Leftarrow) Suppose there exists $x, y \in [0, 1]$ such that

 $\phi(T_f(x,y)) \ngeq T_f(\phi(x),\phi(y))$

 $\phi(T_f(x,y)) \le c \langle T_f(\phi(x),\phi(y))$

There exists $c \in [0,1]$ such that

It follows $T_{x}(x, y) \le \phi^{-1}(c)$. So,

 $T_{\lambda}(\phi(x), \phi(y)) \le \phi(\phi^{-1}(c)) = c$. It is a contradiction.

Example 3.7 Let $\phi:[0,1] \to [0,1]$ a map defined as $\phi(x) = \frac{1}{2-x}$. Let E be a T_F fuzzy equivalence relation

on X such that $T_{x}(x, y) = (x + y - 1) \lor 0$ and

f(x) = 1 - x. Then $s(x) = f^{-1}(\phi f(x)) = \frac{x}{1 + x}$.

So, s is an A-transformation from Example 2.9(2). Hence, $\phi(E(x,y)) = \frac{1}{2 - E(x,y)}$ is T_F fuzzy equivalence relation on X.

Example 3.8 Let $s(x) = x^{p}$, $0 \le p \le 1$ be an A-transformation. Let E be a T-fuzzy equivalence relation on X.

(1) $T_f(x, y) = (x+y-1)\sqrt{0}$ with f(x) = k-kx for k > 0We obtain

 $\phi E(x, y) = (f^{-1} \circ s \circ f)(E(x, y)) = 1 - \frac{1}{k} (k - kE(x, y))^{-p}.$

(2) $T_f(x, y) = xy$ with $f(x) = -\ln x$. We obtain $\phi E(x, y) = (f^{-1} \circ s \circ f)(E(x, y)) = e^{-(-\ln E(x, y))^{\beta}}$.

Example 3.9 Let $s(x) = \frac{px}{x+1}$ be an A-transformation.

Let E be a T_f -fuzzy equivalence relation on X.

(1) $T_{y}(x, y) = (x + y - 1) \lor 0$ with f(x) = 1 - x. Then

$$\phi(E(x,y)) = (f^{-1} \circ s \circ f)(E(x,y)) = 1 - \frac{p(1-E(x,y))}{2-E(x,y)}.$$

(2) $T_{f}(x, y) = xy$ with $f(x) = -\ln x$. We obtain $\phi E(x, y) = (f^{-1} \circ s \circ f)(E(x, y)) = e^{-\rho \ln E(x, y)} e^{-\ln E(x, y)}$.

Example 3.10 Let $s(x) = \ln(x+1)$ be an A-transformation Let E be a T-fuzzy equivalence relation on X.

(1) $T_{x}(x, y) = (x + y - 1) \lor 0$ with f(x) = 1 - x. Then $\phi(E(x, y)) = (f^{-1} \circ s \circ f)(E(x, y)) = 1 - \ln(2 - E(x, y))$.

(2) $T_{x}(x, y) = xy$ with $f(x) = -\ln x$.

We obtain $\phi E(x, y) = e^{-\ln(1 - \ln E(x, y))}$.

Theorem 3.11 Let E be a T_g -fuzzy equivalence relation on X where T_g is a Archimedean t-norm with P- generator g and $\phi:[0,1] \rightarrow [0,1]$ an increasing function with

 $\phi(1) = 1$. Then the following statements are equivalent:

- (1) $\phi \circ E$ is a T_g -fuzzy equivalence relation on X.
- (2) $T_g(\phi(a), \phi(b)) \le \phi(c)$ for $T_g(a, b) \le c$.
- (3) $g(\phi(a))g(\phi(b)) \le g(\phi(c))$ for each $g(a)g(b) \le g(c)$
- (4) There exists a P-transformation h such that $h = f \circ \phi \circ f^{-1}$.

Proof. By Lemma 2.11, it is similarly proved as in Theorem 3.5

Example 3.12 Let $h(x) = a^x - 1(a > 1)$ be a P-transformation. Let E be a T_g -fuzzy equivalence relation on X with a P-generator g(x) = x.

We obtain $\phi \circ E$ a T_g -fuzzy equivalence relation $\phi \circ E$ as follows:

$$\phi(E(x, y)) = (g^{-1} \circ h \circ g)(E(x, y)) = a^{E(x, y)} - 1.$$

Theorem 3.13 Let E be a T_g -fuzzy equivalence relation on X where T_g is a Archimedean t-norm with L-generator g and $\phi:[0,1] \rightarrow [0,1]$ an increasing function with $\phi(1) = 1$. Then the following statements are equivalent:

- (1) $\phi \circ E$ is a T_g -fuzzy equivalence relation on X.
- (2) $T_g(\phi(a), \phi(b)) \le \phi(c)$ for $T_g(a, b) \le c$.
- (3) $g(\phi(a)) + g(\phi(b)) 1 \le g(\phi(c))$ for each $g(a) + g(b) 1 \le g(c)$
- (4) There exists an L-transformation h such that $h = f \circ \phi \circ f^{-1}$.

Proof. By Lemma 2.15, it is similarly proved as in Theorem 3.5

Example 3.14 Let $h(x) = x^n (n \in \mathbb{N})$ be an L-transformation. Let E be a T_g -fuzzy equivalence relation on X with an L-generator $g(x) = x^2$.

We obtain $\phi \circ E$ a T_g -fuzzy equivalence relation $\phi \circ E$ as follows:

$$\phi(E(x, y)) = (g^{-1} \circ h \circ g)(E(x, y)) = E(x, y)^{n}.$$

References

[1] M. De Baets, R. Mesiar, "Psedo-metrics and T-equival-

- ences", J. Fuzzy. Math. vol.5 pp.471-481, 1997.
- [2] M. De Baets, R. Mesiar, "Metrics and T-equalities", J. Math. Anal. Appl vol.267, 531-547. 2002.
- [3] M. Demirci, "Fuzzy functions and their applications", J.Math. Anal. Appl. vol. 252, 495-517, 2002.
- [4] M. Demirci, "Constructions of fuzzy functions on fuzzy equalities", *Soft Computing* vol.7 pp.199-207, 2003.
- [5] U. Heohle, "Quotients with respect to similarity relations", Fuzzy Sets and Systems, vol.27.pp 31-44. 1988.
- [6] U.Heohle, "Non-classical logics and their applications", Kluwer, Dordrecht, 1995.
- [7] J. Jacas, J. Recasens, "Fuzzy T-transitive relations: eigenvectors and generators", *Fuzzy Sets and Systems*, vol 72, pp.147-154, 1995.
- [8] E.P. Klement, R. Mesiar and E.Pap, "Triangular norms. Position paper III: continuous t-norms", Fuzzy Sets and Systems, vol. 145, pp.411-438, 2004.
- [9] H.T. Nguyen and E.A. Walker, Fuzzy logic, Chapman and Hall, New York, 2000.
- [10] V. Novak, "On fuzzy equality and approximation in fuzzy logic", *Soft Computing*, vol 8, pp. 668-675, 2004.
- [11] L. Valverde, "On the structure of F-indistinguishability operators", Fuzzy Sets and Systems, vol.17, pp.313-328, 1985.
- [12] L.A. Zadeh, "Similarity relations and fuzzy orderings", *Inform. Sci.* vol.3, pp.177-200, 1971.

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in the Department of Mathematics, Kangnung University. His research interests are fuzzy topology and fuzzy logic.

Young Sun Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1985 and 1991, respectively. From 1988 to present, he is a professor in the Department of Applied Mathematics, Pai Chai University. His research interests are fuzzy topology and fuzzy logic.