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Abstract

We investigate the properties of A-transformations, P-transformations and L-transformations in metric spaces, t-norms and T-fuzzy

equivalence relations.
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1. Introduction and Preliminaries

The concept of fuzzy equality [1-4], which is also called
the equality relation, the fuzzy equivalence relation, the
similarity relation[5,12], the indistinguishability operator[7,11],
has a significant concern in various fields[6,10]. It is a graded
equality being generalization of the classical equality. We
understand two objects to be approximately equal if they are
similar. The degree 0 means that objects are completely

different and the degree | means that objects are
indistinguishable.

In this paper, we investigate the properties of A-
transformations, P-transformations and L-transformations in

metric spaces, t-norms and T-fuzzy equivalence relations. We
construct metrics by A-transformations. From A-(resp. P-, L-
transformations, we compare t-norms generated by A-(resp. P-,
L-) generators. In particular, we investigate the relationship
between T-fuzzy quasi-equivalence relations and A-(resp. P-,
L-) transformations.

A binary operation T:[0,1]x[0,1]1—[0,1] is called a
t-norm if it satisfies the following conditions:

for each x,y,2=[0,11],
(TH T(x,»=T0,2),
(T2) T(x, T(y,2)) = T(T(x,9),2) -
(T3) T(x,)=x,
(T4) if y<z, then T(x, < T(x, 2).
We denote T(x,y)=x0Oy. A tnorm 7T | is called weaker
than a t-norm T 5( T, is called stronger than a t-norm T i,
denoted by T\, T,, if T ,(x,»)<Ty(x,y).
An increasing function  £[0,1]1—[0,1] is called a
P-generator if T Lx,y) =7 "(A0AVAOD)) is a t-norm.
2[0,11-[0,] is called an
A-generator if T (x,5)=g ' ((e(x) +2(y)Ng(0)) is a

t-norm.

A strictly decreasing

A Dbijective increasing 2[0,1]—[0,1] is called an
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L-generator if T ,(x, 3=k '((Ax)+h(3) —1)A0) is a
t-norm.

Theorem 1.1 [9] If 7 is an Archimedean t-norm, then there

is an increasing continuous £[0,1]—[A0),1] such that
sOy=F "M ADNAVAQ) for all  xy=[0,1]. If
£[0,11-[£(0),1] is an order isomorphism, then

Oy=g ex)e(»)Ve(0)) for all xye[0,1] iff

fx)=g(x) 7 for some »>0.

Theorem 1.2 [8] If 7 is an Archimedean t-norm, then there
is a strictly decreasing continious function £[0,1]—[0, =]
such  that  xOy=F (AR +ANAA) for all
x,ve[0,1]. If g[0,1]-[0,00] is an order reversing
continuous function, then xOy=g ~}(g(x)+ g(¥)A(0))
for all x,y=[0,1] iff Ax)=ag(x) for some a)0.

Theorem 1.3 [9] If 7 is an Archimedean nilpotent t-norm,
then there is a bijective continuous function /[0, 1]-[0, 1]
with xQy= % ~'((W(x) + (y) — 1)\0) for all x,y=[0,1].

Definition 1.4 A mapping & XxX—[0, 0]
if it satisfies the following conditions: for each

is called a
quasi-metric
x,v,2€X,
M1) d(x,x)=0,

M2) dx,2)<d(x,y)+d,2).

A quasi-metric 4 on X is called a pseudo-metric on X if it
satisfies:

M3) dlx,y)=d(y,x), for each x, ye=X.
A pseudo-metric 4 on X is called a
satisfies:

M) if d(x,y)=0 for each x,yeX, then x=y.

metric on X if it

2. Metrics, t-norms and transformations

Definition 2.1 An increasing map s [0, b]—[0, o] is called
an  A—transformation if it is  sub-additive ,ie.
s(x)+s(y)=s(x+y) and s(0)=0.



Lemma 2.2 A map s[0, ]—[0,] with s(0)=0 is an
A —transformation iff for all x,y,z[0, 5] with x+y>z,
we have  s(x) + s(3)=s(2)

Proof. Let s be an A—transformation. Then for all
x,v,2€[0, 8] with x+y=z, s(x)+s(»=2s(x+y)=s(2)
Put z=x+y. Then s(x)+s(y)=s(z)=s(x+y). If x+0=y,
then s(x)= s(x)+ s(0) >s(y) Thus, s is an increasing map.

Theorem 2.3 (1) If & XxX—[0, 0] is a quasi-metric
(resp.  pseudo-metric) and [0, 5]—[0, ] is
transformation, then e=s-d is a quasi-metric
pseudo-metric).

@) If @XxX—[0,00] is a metric and s[0, 8]—[0, o] is
A —transformation such that s(x)>0 for all (0<(x<1, then
is a metric.

A —_
(resp.

e=s°d

Proof. (1) Since d(x,2)<d(x,y)+ d(y,z),

e(x, 2)=s{d(x, 2)<s(d(x, ) + s(d(y, 2)) = e(x, ) +ely, 2).

2) elx,»=0 iff s(d(x,y))=0 iff d(x,y)=0 iff x=y.

s[0,00)—>[0,0] a map defined as
s is A —transformation because

Let 4
is a

Example 24 Let
s{x)=aN\x for a>0.
s{x+ )= aN\(x+ ) <(aAx) + (aN\y) = s(x) + s(»)
be a metric. Then e(x,y)=s(d(x,v))=aAd(x,y)
metric.

Example 2.5 Let 5[0, o0)—[0, ] a map defined as
stk)=x?, 0<p<1. Put p(H=(t+1)?—¢t?—1. Since
B ()=p(t+1)?"1—pt?~1<( for all >0 and A(0)=0,

then t=—}%. It follows

MO=(t+1)?—¢P—1<(. Put

(x+y) ?<x*+y? Thus sis A—transformation. Let 4 be

a metric. Then elx,y)= s(d(x, y)) = dﬂ(x’ y) for all 0<p<1
iS a metric.

Example 2.6 Let s[0,c)—[0,c] a map defined as

—_bx plx+y) X by
sW==37. 20 xtyTl = %+l T 3+1

Thus s is A—transformation. Let 4 is a metric.

Then e(x, y) = s(d(x, v)) z%
metric.

Since

for all $>0 is a

Example 2.7 Let 5[0, c0)—[0, ] a map defined as
s(x)=In(x+1). Since In(x+y+D<In(x+1)+ In(y+1)
then s is A —transformation. Let ¢ is a metric. Then
e(x, y)=s(d(x, y)) =In(1+ d(x, y)) is a metric.

Theorem 2.8 Let £, g[0,1]1—-[0, ] be
Then

an A — generators.
gf "1 is A—transformation iff T,27T .

Proof. Let gf "Ya+b)<gf Wa)+gf ' (b) be given. Put
f a)=x and f~i(p)=y.
gf TH R+ Ay <g(x) + g(v).
Since g ~! is decreasing and A(x)+ A»)> A0) implies
T Lz, 3)=F " (AR + A9)INA0))
>g "1 ((g(x) + gMALO) = T (x,).

Fuzzy equivalence relations and transformations

Conversely, it is similarly proved.

Example 2.9 (1) Let s(x)=x? 0<p<l be A-
Put gf Y x)=s(x)=x? and Ax)=1—=x
TAx,»)=(x+y—1V0 and gx)=(1—x)? We

transformation.
Then
obtain
1
T (e, )={1-((1-0"+A-»"* *}V0.
__px
(2) Let s(x)= ~+1°

o M=—L and fx)=1-x Then

T=(x+y—1VO0 and g(x)=—ﬂ21_;;)-. We obtain

p>0 be A —transformation. Put

- Xy
T fx.9)= 2—xfy+xy :
(3) Let f,&10,11-[0,o] be mappings defined by

AD=-L-1, gx)=—Inx. Then we obtain A-—

g(f " {(x))=In(x+1). Then

— X
Tf(x,y)—m

transformation

2xy=T (x,¥).

Definition 2.10 A non-decreasing map k[a, 1}—[0,1] for
some a<[0,1) is called P-—transformation if it satisfies
Mxy)zh(x)h(y) and R(1)=1.

Lemma 2.11 A map #i[qa,1]-[0,1] for some g=[0,1)
with  A(1)=1 is P—transformation  iff for all
x,¥,2€[a,1] with xy<z, we have h(x)h(»)<h(z).

Proof. Let 4 be P—transformation. Then for all
x,y,2€la, 1] with xy<z, "Wx)h(y)<h(xy)<h(z)

Put z=xy. Then W )h(y)<h(z)=h(xy). If x1<y, then
(x) = (2)h(1)< h(y). Thus, j is a non-decreasing map.

Theorem 212 Let T, and T, be a j
generators f and g Then gf~1 is P—transformation iff
T,2T,.

t-norm with

Proof. Let gf ~(ab)=gf ""(a)gf ~'(b) be given. Put

f N a)=x and foUB)=y. gf N (RDA))=g(x)g().
Since g is strictly increasing and Ax)Ay)<AQ) implies
20)2gf THANAW) 2 2(x)e(y),

T Lz, 9)=7"" (AR VAOD)

2g " ((eenNVeE0) = T [(x,).

Example 2.13 Let gf :[0,1]—[0,1] be a map defined as

gfT'=a""!, a1, Then  gf "l(x)gf "'(»)<gf " (xy)-

Put Ax)==x Then glx)=¢g *land g '(x)=(log ) —1.

We obtain

T (%9 =g " (exeg(»Ve&0)) = (x+y—1)VO.
TAx,)=xy=T [(x,9).

Definition 2.14 A nondecreasing map k#{0,1]-[0,1] is
called an L —transformation if it satisfies
Max+y—D=h(x)+ r(y)—1 with 2(0)=1 and #(0)=0.

Lemma 2.15 A map 2[0,1]—-[0,1] with #(0)=1 and
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R(0)=0 is an L —transformation iff for all x,y, z[0,1]
with x+y—1<z, we have A(x)+h(y) —1<h(2).

Proof. let J be an [ —transformation. Then for all
x,v,2€[0,1] with x+y—1<z,
() + () —1<h(x+y—D<h(2)
Put z=x+4+y—1. Then _
)+ h(y) — 1 <h(2)= W(x+y—1).
If x+1—1<y, then A(x)=h(x)+ #(1)~1<k(y). Thus, #%
is a non-decreasing map.

Theorem 2.15. Let T ,and 7, be a nilpotent t-norm with
L —generators f and g.

Then gf ! is L—transformation iff 7T =T,

Proof. It is similarly proved as in Theorem 2.12.

Example 2.16 Let gf 1:[(,1]—[0,1] be a map defined as
g " H0)=x", neN.
Put j(x,v)=(x+y—1)"—x"—y"+1. Then
saddle point because

R ALD=r,0,1)=0, h=h,=0, h,=nln—1)
If n=2m, since A(x,0) and #(0,y) are decreasing with
7(1,0)=h0,1)=0 and A(1,x)=k(y,1)=0. Hence
h(x, v)=0.
If  a=2m+1, since  A(F.0=k0.4)=0 wih
#(0,0) = h(1,0)= ~(0,1)=0 and

A PV RN

(0= 0, 5) =1-2(5) 120,

Hence #(x,y)=0.

So, gf "M Rx)+Ay)—D<glx)+g(y)—1.
Put f(x)=x. Then g(x)=4x ". We obtain

(1,1) is a

it
T (x,9)=(x"+y"—1)\0) *. Furthermore,
T A, )=0V(x+y—1D=T (x,.

3. T-fuzzy equivalence relations

Definition 3.1[14] A map E XxX—[0,1] is called a 7T—
fuzzy quasi-equivalence relation on X if the following
properties hold:

(El) E(x,x)=1, for each x=X.

(E2) T(E(x,y),E(y,2))<E(x,2), for each x,y,zeX
A T—fuzzy quasi-equivalence relation is called a
fuzzy equivalence relation on X if it satisfies:

(E3) E(x,y)=E(y,x), for cach x,y=X.

A T—fuzzy equivalence relation is called a 7T— fuzzy
equality on X if it satisfies:

(BE) if E(x,y)=1 for each x,yeX, then x=y.

Let £, E,; be T-—fuzzy quasi-equivalence relations on X .

T_

Then E | is called coarser than FE
if E(x,»)<E,(x,y) for each x,y=X.

Remark 3.2 (1) If a tnorm T, is weaker than a t-norm
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T,, then a T ,-fuzzy (quasi-)equivalence E on Xisa T,
-fuzzy (quasi-)equivalence E on X. Thus, A-fuzzy
(quasi-Jequivalence E on X 5 a T—fuzzy
(quasi-)equivalence E on X because T(x,v)<xAy for
every t-norm 7.

(2) The condition (E2) is equivalent
condition: for each distinct x,y, ze X,
(E2-1) T(E(x,3),E(y, 2))<E(x,z).

to the following

Theorem 3.3 Let E be a T-fuzzy quasi-equivalence relation
on X. Then:

() if a=(0,1), then G(x,y) = Elx,y)Va for all x,yeX,
then G is a T-fuzzy quasi-equivalence relation on X.

@) If E Y« ,y)=E(y,x) for all x,yeX, then

F(x,y)= T(E(x,%),E ~(x,3) s
relation on X, for any t-norm G such that G<T.

(3) F(x,v)=E(x, WA\E ~Yx,y) is the finest T—fuzzy
equivalence relation on X which is coarser than E and
E~L

G-fuzzy equivalence

Proof. (1)

TG(x,5),G(y, 2)

= T(E(x,y)Va,E(y,2)Va)

= T(E(x,y),E(y, 2))V T(E(x,3),a)V T(a, E(y, 2)V T{a, @)
<T(E(x, »),E(y,2))Va

<E(x,z2)Va=G(x, z).

2

G(F(x,5),F(y,2)

<G(T(E(x, ), E(y, %)), T(E(y, 2), E(z, %))

S T(T(E(x, ), E(y, %)), T(E(y, 2), E(z, »))

= T(T(E(x, ), E(y,2), T(E(z, ), E(y, x)))

= T(T(E(x, v}, E(3,2)), T(E(z, y), E(v, x)))

= T(E(x,2), E(z,x)=F(x, z).

(3) For T=A in (2), it is easy. If H<E and H<E !,
then H<F=EAE .
theorem, cannot be T —fuzzy

In above E\VE,

quasi-equivalence relation on X, in general.

Example 34 Let X={x, y, 2} be a set. and Define £, E,
as
E\(x,0)=E,(3,9)=E,(2,2)=1
E (., »=E (3,0)=04, E | (x,2)=E (2,2)=0.8
E(»2=E (2,»=0.4
Ex,0)=E,(3,9)=E,(z,2)=1
Eyx,)=E;(3,2=0.6, Ey(x,2)=E,(2,x)=0.3
Ey(y,2)=FE,(2,5=0.3.
Then E | and E, are A-fuzzy quasi-equivalence relations on
X. We can obtain E,VVE, on X as follows
E\VE,(x,0=E \VE,;(y,)=F |VE,(2,2)=1
E\NVE(x,)=FE VE (y,)=0.4,
E \VE (x,2)=E VE,(z,x)=0.8
E\NVE (3,2=E ,VE,(2,9)=0.4.



But E\VE, is not a A-fuzzy quasi-equivalence relations on
X because

0.4 :(E 1\/E 2)(y, z)é (E 1\/E 2)(y, x)/\(E 1\/E2)(x, Z)ZO.G.

Theorem 3.5 Let £ be a
X where T, is a Archimedean t-norm with A — generator f
and ¢:[0,1]-[0,1] an increasing function with ¢(1)=1.
Then the following statements are equivalent:
(1) ¢ Eis a T ~fuzzy equivalence relation on X.
@ TA¢(a),d(b))<¢(c) for T La,b)<c.
(3) AHa)+As(8)=A4(c)) for each fla)+Ab)=Ac)
(4) There exists an A—transformation s such that
s=fog-fh
Proof. (1)=(2). Let E(x,v)=a,E(y,2)=5,E(x,2)=c.
Since E is a T qfuzzy equivalence relation, T fa,b)<c.
We have T {¢(a), #(b))<d(c).
2=03). Let Aa)+Ab)=Ac) be given.
If Ra)+Ab)>A0)2Ac), then T La,b)<c.
If AO)zAa)+Ab)=fc), then T fa,b)<c
Thus T La,b)<c. By (2),
T A$(@), #(5) =f N A@)+ Ad(BONAD)< ().
If Ao(a)) + A (5))>K0), A0z A (),
R¢(a)) + Ap(8)= Ap(c))
If Ag(a)+A(B)ISAD), Ad(a)+Kd(b)=A$()).
(3)=4). By (3), put Aa)=x, A=y A=z
and s=f-¢-f ! For each x+y=z, we have
s(x) +s(¥)=s(z),s(0)=0 and s is increasing. Hence
s is an A —transformation.
@) =(1). Let ¢g=F"1-g5- f with an A —transformation s ,
then ¢ is an increasing map with ¢(1)=1. We will show
¢-E is T fuzzy equivalence X So
¢(E(x,x)) = ¢(1)=1. Since
T Aa,B)=F""(Aa)+ABIANAD))<c, we can prove two
cases (A) Aa)+AH<AD) B) Aa)+Ab)>A0).
(Case A) If Aa)+ABLAQ), then Aa)+AbB)=2Ac)
M If Ag(a)) + Ap(b)< A0), then
T (¢(a), $(b))

=f"HA @)+ A BINAD))

=fTHAf T e s Aa))+ Ao se AB)))

=f" s Ra)+s° Ab)

<f Us(Aa)+AD))

<f s+ Re))=¢(0).
(D) If A¢(a)) + A(5)>K0), then T($(a), $(8)) =0
(Case B) If Aa)+ Ab6)>K0), then
(M If s(Aa)>A0) or s(A8))>A0), then f~1lese Aa)=0
or f~leg. Ap)=0. Thus,

0=T (4(a), (b)) <¢(c)

(I) If s(Aa)<A0) and s(Ab))<A0),
as (I) in (Case A).

T sfuzzy equivalence relation on

since

relation on

we prove similarly

Theorem 3.6 Let E be a T ~fuzzy equivalence relation on

Fuzzy equivalence relations and transformations

X where T ,is a Archimedean t-norm with A —generator f
and ¢:[0,1]—-[0,1] an increasing function with @¢(1)=1.
For all x,y=[0,1],

(T ;(x, )2 T L$(x), ()

equivalence relation on X.

iff ¢-E is a T pfuzzy
Proof. (=). For each T [fa,b)<c,

HA2d(T (a, D)= T L¢(a), $(5)).
By Theorem 3.5(2), ¢- E is a T fuzzy equivalence relation.

(&) Suppose there exists x, ye=[0, 1] such that
T Az, ) FT L), $»))

There exists c=[0,1] such that
(T (2, )< < T Lp(2), $(5))
It follows T Ax,»)<¢ ~*o). So, _

T L), ()< d(¢p ~1())=c. It is a contradiction.
Example 3.7 Let ¢:[0,1]—[0,1] a map defined as
¢(x)=2—l;. Let E be a T fuzzy equivalence relation
on X such that T Lx,y)=(x+y—1)V0 and
Ax)=1—x. Then s(x)=7F"WgAx))= l—f-x .

an A—transformation from Example 2.9(2).

So, s is
Hence, ¢(E(x, y))z-Z——TI(x—yT is T ffuzzy equivalence
relation on X.

Example 3.8 Let s(r)=x? D(p<1 be an A-—

transformation. Let E be a T ,fuzzy equivalence relation
on X.

(1) TAx,»)=(x+y—1V0 with Ax)=k—kx for kD0
We obtain

BE(x, )= (f 1o se DUB(x3) = 1=~ (k= kE(x, 7)) *.
(2) TAx,9=xy with fx)=—1lnx. We obtain

SE(x, v)=(f 1o 5o AE(x,y)) = e ~(TREwD"

Example 3.9 Let S(x):—x% be an A —transformation.
Let E be a T fuzzy equivalence relation on X.

() TAx,»=(x+y—1V0 with Ax)=1~2x Then

HEG ) = (" w5 (B ) =1 - L=Ead)
(2) T Ax,»=xy with Ax)=—1Inx. We obtain
BE(x, )= (f 1+ s+ N(E(x, 9))= ¢ Mo 1-0Fe),

Example 3.10 Let s(x)=In(x+1) be an A —transformation

Let E be a T fuzzy equivalence relation on X.

() TAx,3)=(x+y—1DV0 with Ax)=1—x. Then
H(E(x, )= ("o s° NE(x, »))=1— In(2— E(x, ).

@) T Ax,y)=xy with Ax)=-—Ilnx.

We obtain SE(x, V)= In(1- nEGx )

Theorem 3.11 Let E be a

on X where T,

generator g and ¢:[0,1]—[0,1] an increasing function with

T fuzzy equivalence relation
is a Archimedean t-norm with P—
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#(1)=1. Then the following statements are equivalent:
(1) ¢-E is a T ,fuzzy equivalence relation on X.
Q) T $a),6(b)<d(c) for T (a,B<c.

) g(¢(@)g($(b))<g(¢(c)) for each gla)e(b)<g(c)

(4) There exists a  P—transformation % such
h=fe¢-fL

Proof. By Lemma 2.11, it is similarly proved as in Theorem
35

that

Example 3.12 Let a(x)=ae¢*—1(a>1) be a P—
-transformation. Let E be a T ,-fuzzy equivalence relation
on X with a P—generator g(x)=x.

We obtain ¢ E a T ,-fuzzy equivalence relation ¢- E as
follows:

H(ECx, )= (g '« k- g(E(x,3)=aEx"—1,

Theorem 3.13 Let E be a
X where T, is a Archimedean t-norm with L —generator g
and ¢[0,1]—[0,1] an increasing function with ¢(1)=1.
Then the following statements are equivalent:

(1) ¢-E is a T ,-fuzzy equivalence relation on X.

@) T (Ha),sb)<¢(c) for T (a,b<c.

(3) g(#(a) +g(¢(b)—1<g(4(c)) for each

gla) + g(b) —1<g(0)
(4) There exists an
h=f-¢-f""

Proof. By Lemma 2.15, it is similarly proved as in Theorem
3.5

T ,fuzzy equivalence relation on

L —transformation % such that

Example 3.4 Let j(x)=x"(neN) be an L—
transformation. Let E be a T ,-fuzzy equivalence relation on
X with an I —generator g(x)=x 2.

We obtain ¢ E a T ,-fuzzy equivalence relation ¢ E as
follows:

$(E(x,v))=(g ™' > h @) (E(x, )= E(x,» ".
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