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Abstract
We introduce two concepts of intuitionistic fuzzy Rees congruence on a semigroup and intuitionistic fuzzy Rees con-
gruence semigroup. As an important result, we prove that for a intuitionistic fuzzy Rees congruence semigroup S, the
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0. Introduction

In 1965, Zadeh [28] introduced the concept of fuzzy sets
as the generalization of ordinary subsets. After that time,
several researchers [22,24-27] have applied the notion of
fuzzy sets to congruence theory. In particular, Xie [27]
introduced the concept of fuzzy Rees congruences on a
semigroup and studied some of its properties.

In 1986, Abanassov[l} introduced the concept of intu-
itionistic fuzzy sets as the generalization of fuzzy sets.
Since then, many researchers [2,4-9,11-17] applied the no-
tion of intuitionistic fuzzy sets to relation, algebra, topol-
ogy and topological group. In particular, Hur and his
colleagues [18-21] investigated intuitionistic fuzzy equiv-
alence relations and various intuitionistic fuzzy congru-
ences.

In this paper, we introduce two concepts of intuitionis-
tic fuzzy Rees congruence on a semigroup and intuition-
istic fuzzy Rees congruence semigroup. As an important
result, we prove that for a intuitionistic fuzzy Rees con-
gruence semigroup S, the set of all intuitionistic fuzzy
ideals of S and the set of all intuitionistic fuzzy congru-
ences on S are lattice isomorphic. Moreover, we show
that a homomorphic image of an intuitionistic fuzzy Rees
congruence semigroup is an intuitionistic fuzzy Rees con-
gruence semigroup.

1. Preliminaries

In this section, we list some basic concepts one result
which are needed in the later sections.
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For sets X,Y and Z, f = (f1, f2) : X — Y x Z is called
a complex mapping if f1 : X - Y and fo : X — Z are
mappings.

Throughout this paper, we will denote the unit interval
[0,1]) as 7. And for a general background of lattice theory,
we refer to [3].

Definition 1.1[1,6]. Let X be a nonempty set. A
complex mapping A = (pa, va) + X — I x 1 is
called an intuitionistic fuzzy set (in short, IFS) in X if
pa(z) + va(z) <1 for each z € X, where the mapping
pwa X — I and vy : X — I denote the degree of
membership (namely p4(z)) and the degree of nonmem-
bership (namely v4{x)) of each z € X to A, respectively.
In particular, 0. and 1. denote the intuitionistic fuzzy
empty set and the intuitionistic fuzzy whole set in X
defined by 0.(z) = (0,1) and 1.(z) = (1,0) for each
z € X, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definitions 1.2[6]. Let X be a nonempty set and let
A= (pa,va) and B = (up,vp) be IFSs on X. Then

(1) ACBiff pua < pp and v4 > vp.

(2)A Biff AC Band B C A.

(3) 4° = (va, ).

(4) ANB = (ua A pup,vaVug).

(5) AUB = ([LA\//,LB,I/A/\I/B).

(6) H (IJ'A71_“'A)7 < >A:(1_VA’VA)'

Definition 1.3{6]. Let {4;};cs be an arbitrary family of
IFSs in X, where A; = (pa,,va,) for each i € J. Then
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(1) ﬂAl = (/\IUA“VVAi)'
(2) UAi = (VIJ‘A«;’/\VAi)'

Definition 1.4[5]. Let X be a set. Then a complex
mapping B = (ur, vr) : X x X — I x I is called
an intustionistic fuzzy relation (in short, IFR) on X if
wr(z,y) + vr(z,y) < 1for each (z,y) € X x X, ie, R€
IFS (X x X).

We will denote the set of all IFRs on a set X as IFR(X).

Definition 1.5[8] Let X be a set and let R, Q € IFR(X).
Then the composition of R and @, @ o R, is defined as
follows : for any z,y € X,

poor(z,y) = \/ [kr(z, 2) A ug(z,y)]
z€X

and

vgor(Z,y) = /\ r(z, z) Vvo(z,y)).
z€X

Definition 1.6. An Intutionistic fuzzy Relation R on a
set X is called an intutionsitic fuzzy equivalence relation
(in short, IFER) on X if it satisfies the following condi-
tions :

(1) it is intutionsitic fuzzy reflezive, i.e.,R(z,z) = (1,0)
for each z € X.

(i) it is intutionsitic fuzzy symmetric, i.e.,R(z,y) =
R(y,z) for any z,y € X.

(iii) it is intutionsitic fuzzy transitive, i.e., Ro R C R.

We will denote the set of all IFERs on X as IFE(X).

Let R be an intuitionistic fuzzy equivalence relation
on a set X and let a € X. We define a complex mapping
Ra: X — I x I as follows : for each x € X

Ra(z) = R{a,z).

Then clearly Ra € IFS(X). The intuitionistic fuzzy set
Ra in X is called an intuitionistic fuzzy equivalence class
of R containing a € X. The set {Ra : a € X} is called
the intuitionistic fuzzy quotient set of R by X as denoted
by X/R.

Result 1.A[19, Theorem 2.15]. Let R be an intuitionistic
fuzzy equivalence relation on a set X. Then the followings
hold :

(1) Ra = Rb if and only if R(a,b) = (1,0) for any
a,be X.

(2) R(a,b) = (0,1) if and only if RaN Rb = 0., for any
a,be X.

(3) UaEX Ra=1..

(4) There exists the surjection p : X — X/R defined
by p(z) = Rz for each z € X.

Definition 1.7[19]. We define two IFRs on a set X, A
and v/ as follows, respectively : for any z,y € X,
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v (,y) = (1,0).
It is clear that A, v € IFE(X).

Let S be a semigroup and let A be a nonempty set.
Then, A is called an ideal of S if AS, SA C A (See [10}).

Definition 1.8[11]. Let A € IFS(S). Then A is called
an intustionistic fuzzy ideal (in short, IFT) of S if for any
T,y €S8,

ra(zy) = paz) vV paly) and valzy) <valz) Avaly).

We will denote the set of all IFI, of S as IFI(S). Then,
it is clear that (IFI{S),N,U) is a distributive lattice hav-
ing the greatest element 1g and the least element 0. or
Og, where 1g = 1., and we use 0., if S has no zero element
and Og if S a zero element 0. In fact, 0g(z) = (0,1) for
each 0 # z € S. It is well-known (Proposition 2.6 in [12])
that if S has a zero element 0, then for each A € IFI(S)
and each z € S, pa(z) < pa(0) and va(z) > v4(0).
In this paper, we define A(0) = (1,0) for each A € IFI(S).

2. Intuitionistic fuzzy Rees congruences

Definition 2.1[19]. Let X be a set, let R € IFR(X)
and let {Ro}aer be the family of all the IFERs on
X containing R. Then (\,cp Ra is called the IFER
generated by R and denoted by R°.

It is easily seen that R® is the smallest intuitionistic
fuzzy equivalence relation containing R.

Definition 2.2{19]. Let X be a set and let R € IFR(X).
Then the intutionsitic fuzzy transitive closure of R, de-
noted by R*°, is defined as follows :

R> = U R™, where R™ = RoRo---o0R(n factors).
neN

Definition 2.3[20]. An IFR R on a groupoid S is said
to be:

(1) intuitionistic fuzzy left compatible if ugr(z,y) <
ur(zz, zy) and vr(z,y) >

vr(zz, zy), for any z,y,z € S.

(2) intuitionistic fuzzy right compatible if pr(z,y) <
pr(zz,y2) and vg(z,y) >

vr(zz,yz), for any z,y,z € S.

(3) intuitionistic fuzzy compatible
1r(z,t) < pr(zz,yt) and

vr(z,y) Vvg(z,t) > vr(zz,yt), for any z,y,2,t € S.

if pr(zy) A

Definition 2.4[20]. An IFER R on a groupoid S is called
an:
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(1) intuitionistic fuzzy left congruence (in short, I FLC)
if it is intuitionistic fuzzy left compatible.

(2) intustionistic fuzzy right congruence (in short,
I'FRC) if it is intuitionistic fuzzy right compatible.

(3) intuitionistic fuzzy congruence (in short, IFC) if it
is intuitionistic fuzzy compatible.

We will denote the set of all IFCs [resp. IFLCs and
IFRCs] on a groupoid S as IFC(S) [resp. IFLC(S) and
IFRC(S)]. Then it is clear that A,y € IFC(S).

Let R be an intuitionistic fuzzy congruence on a
semigroup S and let a € S. The intuitionistic fuzzy set
Ra in § is called an intuitionistic fuzzy congruence class
of R containing a € S and we will denote the set of all
intuitionistic fuzzy congruence classes of R as S/R.

Result 2.A[20, Theorem 2.22]. Let R be on intuition-
istic fuzzy congruence on a semigroup S. We define the
binary operation * on S/R as follows : for any a,b € S,

Ra + Rb = Rab.
Then (S/R, ) is a semigroup.

For a semigroup S, it is clear that IFC(S} is a partially
ordered set by the inclusion relation ” C 7. Moreover,
for any P, @ € IFC(S), PNQ is the greatest lower bound
of P and @ in (IFC(S),C ) but PuU @ ¢ IFC(S) in
general(See Example 2.11 in [19]).

Result 2.B(21, Lemma 2.3]. Let S be a semigroup
and let P,Q € IFC(S). We define PV Q as follows:
PVQ=PUQ ie, PVQ =, n(PUQ)™ Then
PvQ € IFC(S).

Result 2.C[21, Proposition 2.5]. Let § be a semi-
group. If P,Q € TFC(S), then P v @ = (P o Q).

For a semigroup S, we define two binary operations V
and A on IFC(S) as follows : for any P,Q € IFC(S),

PVQ=PUQ and PAQ=PNQ.

Result 2.D[21, Theorem 2.6]. Let S be a semigroup.
Then (IFC(S),A, V) is a complete lattice with A and v/
as the least and greatest elements of IFC(S).

Let A be an IFI of a semigroup S. Let us define a
complex mapping B4 = (pr,,vr,) : S x 8 — I as
follows: for ant z,y € S,

z) A , itz #y;
KR4 (z’ y) = { iA( ) N‘A(y) e i z
and
valxlyVuv , f :
VRA(Z,Y) :{ 0:4( )V ray)) ;zii

Then clearly R4 = (ur,,Vr,) is an intuitionistic fuzzy
relation on S.

Proposition 2.5. Let A be an IFI of a semigroup S.
Then R4 is an IFC on S. In this case, R4 is called the
intuitionistic fuzzy congruence iduced by A on S.

Proof. By the definition of R4, it is clear that R, is
intuitionistic fuzzy reflexive and intuitionistic fuzzy sym-
metric . Let z,y € §. Then

BRaoRA(T,Y) = \/ (R4 (@, 2)ABR 4 (2,Y)]
2€8

and

VRAORA(:E»:U) = /\ [I/RA (z, 2)VvR, (2, y)]
2€S8

Case(i): Suppose z = y. Then

HRAso0RA (:l?, x) = \/ [:“RA (:L', Z) ANPR, (z’m)]
z€S

= \/ KR4 (I, z)

z€S
(Since R4 is intuitionistic fuzzysymmetric)

> /JRA(.Z‘,.Z') =1

and

VRAoRA (CL’, .’E) = /\ [VRA (-7"5 Z) Vg, (Z, .'L')]
z€S

= /\ vr,(z,2)

z€S
<vg,(r,x)=0.

Thus R4 0 Ra(z,z) = (1,0) = Ra(z, z).

Case(ii) : Suppose z # y. Then

HRs0RA (.’17, y)
= \/ (R4 (2, 2) /\/‘LRA(zay)]
z€S—{=z,y}
v [/’LRA (z,2) A 1R (2, y)] v [/J'RA (z,y) A KR4 (y’ y)]

=pra @YV N\ (pa@) Apa(z) Apa(z) Apay)]
z€S—{z,y}

<pri(@y)v \/
z€S—{z,y}
= N’RA(:I:)y) N HR4 (‘T7y) = UR4 (Iay)

[pa(x) A pa(y)]
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and

VRaoR4 ($,y)
= /\ [VRA(m7Z)VVRA(z7y)]
ze5—{=z,y}
A [VRA (:L‘,.’L‘) Vg, (.’L‘,y)] A [VRA (:E,y) v VRA(y7y)]

:VRA(may)/\ /\

z€S—{z,y}

= VRA(x5y) A /\

z€S—{z,y}
Z VR, (‘7"7 y) A /\

ZES—{E,y}
= VRA(xay) A VRA(:an) = VRA(:Cay)'

[VRA (z,2) V VR, (y,2)]
[valz) Vva(z) Vvaly) v va(z)

[va(z) Vva(y)]

Thus pr,ora(T,Y) £ pr.(,y) and vr,or,(z,y) >
Vr4(z,y). In either case, R4 o R4 C Ra. So R4 €
IFE(S).
Now let z,y,t € S.
Case (i) : Suppose tz = ty. Then
KR, (tfl),ty) =1>upgr, (x,y)
and
VR, (tz,ty) = 0 < vR, (2, y).

Case (ii) : Suppose tz # ty. Then = # y. Since A €

IFI(S),

1R, (t2,ty) = pa(tz) A pa(ty) > pa(@) A paly)
and

VRa(tz, ty) = va(tz) Vvalty) <va(z) Vrval(y).
So R4 is intuitionistic fuzzy left compatible. In the same
way, we can see that R4 is intuitionistic fuzzy right com-
patible. Hence R4 € IFI(S). This completes the proof. B

Definition 2.6. Let S be a semigroup and let 0., # A €
IFI(S). Then R4 is called an intuitionistic fuzzy Rees
congruence (in short, IFRC) on S.

Let A be an IFI of a semigroup S and let
SuppA ={z € S: A(z) = (1,0)}.
Then it is clear that suppA is an ideal of S.

Theorem 2.7. Let A be an IFI of a semigroup S. Let A
be the set of all ideal of S containing suppA and let B be
the set of all ideals of the quotient semigroup (S/Ra4, *).
We define the mapping f : A — B as follows : for each
JEA,

f(‘]) = JRA7
where JR4 = {bR4 : b € J}. Then f is an inclusion -

preserving bijection.

Proof. Let J € A Let K € S/R4 and let H € JR4.
Then there exist a € § and b € J such that K = aR4
and H = bR4. Thus K x H = aR4 xbR4 = abR4 and
Hx+ K =bRsg*aR4 = baRa. Since J is an ideal of S,
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abcJandba€eJ. So K+«H¢c¢ JRysand HxK € JR4.
Hence JR4 € B.

Suppose J; # Js for any Ji, Jo € A. Then there exists
ana € Ssuchthatae J;\ Jaorae€ o\ Jp.

Case (i) : Suppose a € Ji\J;. Assume that f(J;) =
f(J2), i.e, J1R4 = J2Ra. Then there exists a b € J» such
that aR4 = bR,4. Thus, by Result 1.A, R4(a,b) = (1,0).
Since a ¢ J2, a # b. Then pur,(b) = pr,(a,b) =
pala) Apa(d) =1 and var, (b) = vr,(a,b) = va(a) v
va(b) =0. Thus pa(a) = pa(d) = 1and va(a) = va(b) =
0, ie, A(a) = A(b) = (1,0). So a € suppA C Jo and thus
a € Jp. This contradicts the fact that a ¢ J,. Hence
() # f(Ja).

Case (ii) : Suppose a € Jo \ J;. By the similar argu-
ments of Case (i), we also have f(J;) # f(Jz). Therefore
f is injective.

Now let X € B. Then there exists a X C S such that
X = KRy Let Ki = {x € S:2Rs € KR4} and let
z € SKy. Then there exists y € S and z € K; such that
z = yzx. Since z € K1,7Rs € KR4. Since KR4 is an
ideal of S\R4,2Rs = yzR4 = yRs*xzRa4 € KR,. Thus
z € K;. So SK; C K;. By the similar arguments, we
have K;S C K. Hence K, is an ideal of S.

Let a € SuppA and let z € K;.

Case(i) : Suppose ¢ = az. Since K; is an ideal of
S, aec Kl-

Case(ii) : Suppose a # az. Let z € S.

(1) If 2 # a and z # ax, then

HaR 4 (z) HRa (aa Z) = kA ((l) A /lA(Z)
— palaz) Apa(z)  (Since A(a) = (1,0))
= fiaz)R4(?)

and

Vara(2) =vr,(a,2) =va(a) Vva(z)
=va(az) V va(2) = Vaz)r, (2)-

(2) If 2 = a, then

HaRa(2) = pRra(a,2) = 1 = pa(az)Apa(?) = fi(az)r, (2)

and

Vara(2) =vR,(a,2) =0 =v4(az)Vra(z) = V(az)Ra (2)-

(3) If z = az, then , by the similar arguments of (2),
we have

Hara(2) = laz)r4(2) and vep,(2) = Vaz)Ra(2)-

In all, aRs = (az)R4a C KR,. By the definition of
Ki,a € K;. Thus K; € A. It is clear that K1R4 =
KR4 = X. So f is surjective.

We can easily check that f is an inclusion preserving.
This completes the proof. B

Proposition 2.8. Let S be a semigroup with 0. We
define the mapping g : IFI{(S) — IFC(S) by ¢g(A) = Ra
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for each A € IFI(S).
injection.

Then ¢ is an order-preserving

Proof. Suppose A # B for any A, B € IFI(S). Then

there exists an z € S such that A(z) # B(z). Clearly
x # 0 A(0) = B(0) = (1,0). Thus
1R, (Z,0) = pa(z) A pa(0) = pa(z),

v, (2,0) = va{z) Vva(0) = va(z)

and

prp(z,0) = pp(x) A pp(0) = pp(z),
vry(z,0) = vg(z) Vvp(0) = vg{x).

So R4 # Rp and thus g is injective. It is easily seen that
g is an order-preserving. This completes the proof.lk

3. Intuitionistic fuzzy Rees congruence
semigroups

Definition 3.1. A semigroup S is called an intuitionistic
Jfuzzy Rees congruence semigroup (in short, IEFRC-
semigroup) if every IFC on S is an IFRC.

Proposition 3.2. Let S be an IFRC-semigroup. Then
(1) S has a zero element 0.
(2) If R is an IFC on S, then R4 = R, where
A(z) = R(z,0) for each z € S.

Proof. (1) Clearly, Ag € IFC(S). Since S is an IFRC-
semigroup, Ag is an IFRC on S. Then there exists an
0., # A € IFI(S) such that Ag = Ry4. Since A # 0.,
there exists an € § such that pa(z) > 0 and v4(z) < 1.
Let y € § such that y # . Then

= pa(y)Apalz) =0

Ung (ya 37) = HKR4 (y7 17)

and

Uns(¥:2) = VR, (¥, 2) = va(y)Vralz) = 1.

Since pa(z) > 0and va(z) <1, pa(y) =0and va(y) = 1.
Thus A(y) = (0,1) for each y € S with y # . Since A
is an IFT of S, ua(zz) > pa(z),va(zz) < va(z) and
palzz) > pa(z),va(zz) < va(z) for each z € S. Thus
zx = 2z = . Hence z is a zero element of S.

(2) Suppose R be an IFC on S. Since S is an IFRC-
semigroup, there exists an 0. # A € IFI(S) such that
R = Ry4. By (1), S has a zero element, say 0. We define
a complex mapping B : S — I x I by B(z) = R(z,0) for
each z € S. Then clearly B € IFS(S). Let z,y € S. Then

pe(yz) = pr(yz,0) > pr(z,0) = pa(2),
ve(yz) = vr(yz,0) < vg(z,0) = I/B( ),

pe(yz) = pr(yz,0) > pr(z,0) = ps(y),
vp(yz) = vr(yz,0) < vr(z,0) = VB(y)
and
B(0) = R(0,0) = (1,0).

So B € IFI(S). Now let y € S with y # z. Then

pB(Y) = ur(Y,0) = pir, (¥,0) = pa(y)Apa(0) = pa(y)

and

ve(y) = vr(¥,0) = vr,(y,0) = va(y) Vva(0) = va(y).

Hence B = A. This completes the proof.l

Theorem 3.3. Let S be an IFRC-semigroup. Then
IFI(S) and IFC(S) are isomorphic.

Proof. By Proposition 3.2(1), S has a zero element 0.
Then, by Proposition 2.8, that exists an order-preserving
injection g : IFI(S) — IFC(S) defined by g(A) = R4 for
each A € IFI(S). Moreover, by Proposition 3.2(2), g is
surjective. Thus ¢ is an order-preserving bijection.

Let A, B € TIFI(S) and let 2,y € S with = # y. Then

PRans (%,Y) = anB(Z) A pans(Y)
[wa(@) A (@) Alpaly) A ps(y)]
[pa(@) A pa(@) A les(y) A ps(y)]
= MR, (Ia y) ANBR, (.7,‘, y) = HRaNRp (:IJ, )

BganB)(z,y) =

li

and

VRans (Iay) = VAHB(:E) v VAﬂB(y)
= [va(z) Vve(@)]V[valy) vV ve(y)]
= [va(z) Vva(@)]V[ve(y) Vve(y)]
= VR, (%,Y) VVR,(Z,Y) = VRanRs (T, Y).

Vg(ANB) (.’L‘, y)

Moreover, pg(ans) (z,%) = prans(z2) = 1
IRanRe (T, %) and Vg(AﬂB)(CE’ Z) = VRunp(T,x) =
VRangrg (7, T). So g(AN B) = g(A) Ng(B).

Clearly, A C AV B and B ¢ AV B. Since g is an
order-preserving, g(A) C g(AV B) and g(B) C g(AV B),
ie.,, R4 C Rayg and Rg C Ravp. So R4V Rg C Rayp.
Let z,y € § with z # y. Then

H I

:U'RA\/B(xvy) = /‘AVB(x) A /J«A\/B(y)
= [pa(@) V@) Alpaly) vV psy)]
= [pa(@) A pa@)]V (pa(@) A pps(y)]
Vipa(y) A ps(@)] Vv (ps(z) A us(y)
and
VRavs (x,y) VAVB(:E) \ VAVB(y)

= [va(@) Ave(@)]V [valy) Ave(y)]
= [va(z) Vva(y)) Alvalz) Vus(y)
Ava(y) Vve(@)] Alvs(z) V ve(y))

On the other hand,

pa(x) A paly)
= UR4 (m7 y) < HRaoRg (x’ y)
< fi(RaoRp)*(T,Y) = BR4vRp(T,y) (By Result 2.C) (1)
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and

VR, (.’E, y) Z VR oRp (xy y)
IJ(RAORB)oo (IE, y)
URA\/RB(may)' (1)/

va(z) Vva(y)

v

Also,

= HRp (z, y) < HRAoRgp (z, )
W(RaoRg)> (T, Y)
BRaVRs(Z,Y)

(By Result 2.C) (2)

pB(T) A pp(y)

IN

and

VRp (IE,y) Z VR,f;ORB (my y)
V(R4s0Rp)™ (.’E, y)
VRAVRB (:1:7 y) (2)/

vp(z) Vvp(y) =

v

On the other hand,

pa(@)Aup(y) < paley) Aps(zy) Apa(e)Aps(y) (3)
and

va(z)Vve(y) = valey)Vue(zy)Vva(e)Ves(y), (3)
Also,

pB(@)Apa(y) < palzy) Aps(zy) Aup(@) Apaly) (4)
and

vp(z)Vraly) > va(zy)Vus(zy)Vve(z)Via(y). (4)

In (3) and (3),
Case (i) : Suppose zy = z. Then

pa(@) App(y) < pal@) Aps(z)Aups(y)

< ws(z) A ps(y)

< PR.vRs(T,Y) (By (2))
and
va(z)Vue(y) > va(z)Vue(z)Vup(y)

> vp(z) Vre(y)

2 VRAVRg (xay) (By (2)1)
Case (ii) : Suppose zy = y. Then
pa@)App(y) < paly) Aps A ps(z)

< pa(@) Apaly)

< BRovRs(Z,Y) (By (1))
and
va(z)Ve(y) > va(y)VveVug(z)

> va(z) Vvaly)

2 VRuvRg(Z,Y). (By (1))
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Case (iii) : Suppose zy # = and zy # y. Then

HR A ($,.Z‘3/) ANUbRg (wya y)
/J'RAORB (x)y) S /'I‘(RAORB)w(‘T7 y)
BRAovRE(Z,Y)

pa(@) App(y) <

IA

and

2 VRra(Z,7Y) V VR, (2Y, 1)
2 VRioRp (ZL‘, y)
2 V(R4 0Rp)™ ('T7 y) = VR4VRp ((IE, y)

va(z) V vp(y)

By the similar arguments, from (4) and (4)’, we obtain
pa(@) A ps(Y) < pravrs(z,y) and va(z) V vp(y) >
VRsVRp (SL‘, y)

In a'lla HRavp (xa y) <
VRAVB(Z,'y) z VRAVR}% (:c,y) SO) by (*) and (**)a
Ravp C RsV Rp. Hence Ryyg = Ra V Rp, ie.,
g(AV B) = g(A) Vv g(B). Therefore g is lattice-order pre-
serving, i.e., g is a lattice isomorphism. This completes
the proof.l

HRAVRE (‘T: y) and

Since IFI(S) is a distributive lattice, by Theorem 3.3,
we have the following result.

Corollary 3.4. Let S be an IFRC-semigroup. Then
IFC(S) is a distributive lattice.

Definition 3.5[6]. Let X and Y be nonempty sets and
let f: X — Y beamapping. Let A= (u4,v4) be an IFS
in X and B = (up,vp) be an IFS in Y. Then

(1) the preimage of B under f, denoted by f~1(B), is
the IFS in X defined by:

FHB) = (f"Hus), [ va)),

where f~'(up) = ppo f.
(2) the image of A under f, denoted by f(A), is the
IFS in Y defined by:

F(A) = (f(na), f(va)),

where for each y € Y

V(L-ef_l(y) palz), if f~Hy)#0

pray(y) = flpa)ly) = { 0, if f~(y) =0

and

/\a:ef—l(y) VA(x) if f_l(y) # @;
L if f—l(y) =0.

Definition 3.6[11]. Let A be an IFS in a set X. Then
A is said to have the sup property if for each subset T of
X, there exists a tg € T such that pa(to) = Ve pa(t)

and va(to) = Ayeq va(t).

Vs @) = Fra)y) = {

Result 3.A[11, Proposition 4.4]. Let f : G — G’ be
a groupoid homomorphism and let A € IFS(G) have sup
property. If A € IFI{G), then f(A) € IFI(G").
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By using the process of the proof of Proposition 2.19
in {17], we can easily show that the following result holds
without the condition having the sup property.

Lemma 3.7. Let f: S — S’ be a semigroup homomor-
phism and let A € IFS(S). If A € IFI(S), then f(A) €
TF1(S").

Proposition 3.8. The homomorphic image of an
IFRC-semigroup is an IFRC-semigroup.

Proof. Let f: S — T be a semigroup epimorphism and
let S be an IFRC-semigroup. Let H € IFC(T). Define
a complex mapping R = (ug,vr) : S xS — I x I by
R(z,y) = H(f(x), f(y)) for any z,y € S. Then clearly
R € IFR(S). Since H € IFR(T), pr{z,y) + vr(z,y) =
un(f(@), F(W) +vur(f(x), f(3)) < 1. Thus R € IFR(S).
Moreover, R is intuitionistic fuzzy reflexive and intu-
itionistic fuzzy symmetric from the definition of R. Let
<,y € S. Then

pror(z,y) =\ lur(@,2) A pa(z,y)]
2€8
= Via(f@), f@) A pu(f(2), f @)
z€S
< \/[,U/H(f(m)vz) /\,UH(Z,f(y))]
z€S
= ,UJHOH(f(:L')a f(y)) < ﬂH(f(ﬂf)7f(y))
= pr(z,y)
and
vror(z:y) = N Ivalz,2)Vug(z,y)]
= AWu(f@), (=) Veu(f), f)]
zeS8
> Ala(i().2) Vs 1)
z€S
viou(f(z), f(¥)) = vu(f(2), f(y))
VR('T’ y)

Thus R is intuitionistic fuzzy transitive. So R € IFE(S).
Let z,y,a,b € S. Then

pr(f(za), f(yb))
pr(f(2)f(a), f(y)f (b))

MH( (@), £(¥)) A pr(f(a), £(b))
(z

pr(z,y) A pr(a,b)

nr(za,yb) =

Y%

Il

and

VR(Iaa yb)

vu(f(za), f(yb))
VH(f(w)f( ), F(y)f (D))
va(f(z), f(9)) vV vu(f(a), f(b))

= UR(:/U y) V vr(a,b).

IA

Thus R is intuitionistic fuzzy compatible. So R € IFC(S).
Since S is an IFRC-semigroup, there exists an 0. # A €
IFI(S) such that R = R4. By Lemma 3.7, f(A) € IFI(T).

We will show that H = Hy 4. Let z,y € T. Then

Case (i) : Suppose z = y. Then, clearly Hy4)(z,y) =
(1,0) = H(z,y). Case (ii) : Suppose z # y. Since f is
surjective, there exist a,b € S such that x = f(a) and
y = f(b). Thus

pE(T,Y) ne(f(a), f(b)) = pr(a,b) = pr,(a,b)
= pa(a) Apa(d)
< (Vo pa@)A(C na(®)
zef(x) 2€f~H(y)
= flpa)@) A f(pal) = pray(@) A pga(y)
= HHja (l‘, y)
and
v (z,Yy) v (f(a), f(b)) = vr(a,b) = vr,(a,b)
= wva(a) Vva(d)
> (V va@)Vv( V va)
2€f~1() z€f~1(y)
= fa)(@) V f(valy) = vsa)(z) V via)(y)
VH;(ay (:c,y)

Thus H C Hj(4). On the other hand,

By (@) A ppay(y)
= flpa)@) A flpa)(y)

= (V wpa)AC

2€f-1(2) wef~1(y)

: Vo al2) Apa(w))

zef~Hz),wef~1(y)

/J‘Hf(,q) (LL', y)

pa(w))

= V pra (2 w)
zef~H@)wef~1(y)
= \/ MR('ZJ ’ll))

z€f~1(z)wef~1(y)

-V

zef~Hz)wefH(y)

pr (f(2), f(w))

< pE(,y)
and
VH; ) (2,Y) = vy (@) Ve (y)
= flva)(z)V f(VA)(y)
= (A va@)V( A va(w)
z€f~1(z) wef‘l(y)

- A

zef~H(z),wef~1(y)

va(z) v va(w)]

= /\ VR4 (Z,’LU)
zef~1(z),wef~(y)
= /\ VR(za ’U))

zef~1(z),wef1(y)
zef (=), wef~1(y)
> VH(:Uv y)

vi(f(2), f(w))
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Thus Hy4y C H. Hence H = Hy(4). This completes the
proof.H

Definition 3.9. A semigroup S is said to be intuitionis-
tic fuzzy congruences free if S has no intuitionistic fuzzy
congruences other then g and Ag.

Definition 3.10. A A semigroup S is said to be
intuitionistic fuzzy 0-simple if S? # {0}, and Og and 1g
are the only intuitionistic fuzzy ideals.

Theorem 3.11. Let S be an IFRC-semigroup and
S? # {0}. Then S is intuitionistic fuzzy congruences free
if and only if S is intuitionistic fuzzy O-simple.

Proof. (=) : Suppose S is intuitionistic fuzzy congru-

ences free. Let A(# 0.) be any IFI of S. Then R4 €

IFC(S). Thus, by Definition 3.9, R4 = Vg or R4 = Ag.
Case(i) : Suppose R4 = 5. Let 0 # z € S. Then

R4 (0,2) = pos(0,7) = 1 = pa(0)Ana(z) = pa(z)

and
VR, (0,2) = vgs(0,2) = 0 = v4(0)Vra(z) = va(z).

SO, A= 1s.
Case(ii) : Suppose R4 = Ag. Let 0 # 2 € S. Then

bR, (0,2) = pa(r) = pag(0,2) =0

and
vr,(0,z) = va(z) = vag(0,2) = 1.

SO, A= 05.
simple.

(«=) : Suppose S is intuitionistic fuzzy 0-simple and let
R € TIFC(S). Then, by Theorem 3.3, there exists an 0., #
A € TFI(S) such that R = R4. Since S is intuitionistic
fuzzy 0-simple, either A = 0g or A = 1g.

Case(i) : Suppose A = 1g. Let © # y € S. Then

Hence, in all, S is intuitionistic fuzzy 0-

ur(z,y) = pra(@,y) = pa(@) Apaly) =1
and
VR(Z,Y) = VR, (%, ) = va(z) Vraly) = 0.
SO, R= Vvs-
Case(ii) : Suppose A = 0s. By a routine verification,

we have R = Ag. Hence, in all, S is intuitionistic fuzzy
congruences free. This completes the proof.ll
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