Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers

불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션

  • Seo Byong-min (Research Institute of Basic Sciences, Chungnam National University)
  • 서병민 (충남대학교 기초과학연구소)
  • Published : 2005.12.01

Abstract

Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

일정한 평균 지하수 유속을 가진 불균질한 등방성 삼차원 대수층 내에서 정류상태로 흐르는 지하수의 흐름과 함께 이동해가는 비반응성 오염물질에 대한 몬테카를로 시뮬레이션이 시행되었다. 대수-정규적으로 분포되어 있는 수리전도도 K(x)가 임의장으로 설정되었으며 시뮬레이션 동안에 발생할 수 있는 불확실성을 감소하기 위해 여러 가지 방법들이 시도되었다. 1600개 오염운들에 대한 이차공간적률의 집합적평균(ensemble average) <$S_{ij}'(t',\;l')$>(i,\;j=1,2,3), 그리고 오염운중심분산 $R_{ij}'(t',\;l')$이 각기 다른 세 가지 불균질도${\sigma}_Y^2=0.09,\;0.23$ 및 0.46에 대해서 시뮬레이션 되었으며 또한 각기 다른 크기의 평균속도에 수직방향인 선형초기오염원(l': 1, 2, 4)에 대해서 입자추적이 행하여 졌다. 시뮬레이션 된 무차원 종적률들은 일차근사법에 의한 비에르고딕 이론적 결과와 비교적 잘 일치하나 시뮬레이션 된 무차원 횡적률들은 일차근사법에 의한 이론적 결과들 보다 더 큰 값을 보인다. 일차근사법에 의한 비에르고딕 이론적 결과는 특히 불균질도가 큰 대수층에 대해서 그리고 큰 무차원 시간에 대해서 시뮬레이션 된 무차원 횡적률들을 과소평가 했다 시뮬레이션 된 집합적 평균이차적률은 에르고딕 상태에 도달하지 못했으며 횡방향으로의 오염운 확장이종방향보다 훨씬 느리게 에르고딕 상태에 접근하는 것으로 관찰되었다. 불균질한 대수층 내에서의 오염운의 진화는 초기 오염원의 모양이나 배열상태 보다는 주로 대수층의 불균질도와 초기 오염원의 크기에 영향을 받는 것으로 밝혀졌다.가 정신의 숭고한 고유-독창성(Originality)이 피드백의 경로를 투과하면서 자신을 남에게 투영시켜 얻어내는 것이 고유성의 변종이다. 피드백은 단순한 작품의 일부가 아니라 작품을 이루는 뼈대이다 기술의 과시만으로는 예술의 행위가 될 수 없다. 작가의 예술성이 관객의 감성에 피드백 되도록 노력해야 한다 그러기 위해서는 예정된 피드백이란 느낌을 관객이 갖지 않도록 하여야 한다. 인터렉티브 미디어 아트는 초기의 형태에서 벗어나 새로운 집적된 피드백 기술로 전환하여야 할 시기가 온 것이다.료된다.시한 개체의 수술 전 방사선학적 평균 고관절 등급은 양측 모두 $3.2\pm0.9$이었고 수술 직후의 좌 우측 평균 고관절 등급은 각각 $2.7\pml.1,\;2.7\pm0.9$ (n=36) 이었다. 수술 직후와 2, 4, 8, 12, 24주 후의 고관절 등급이 수술 전에 비하여 유의적으로 개선된 것을 확인하였다.(P<0.01). 수술 후 정기적인 검사 시에 측정한 Norberg angle, percentage of femoral head coverage도 수술 전과 비교해 유의성 있게 증가하였다(P<0.01). 변형 3중 골반 절골술 직후의 평균 골반직경은 수술 전의 골반직경보다 유의적으로 증가하였으며(P<0.01)(n=36) 수술 후 평균 9.3L2.7주에 절골선 유합이 종료되었다(n=21). 반면 편측 3중 골반 절골술을 실시한 경우에는 수술 후 골반경이 수술 전과 비교해 증가하지 않았다. 변형 3중 골반 절골술후에 장액종 형성(1마리), 스크류 변위(4마리), 스크류 부러짐(1마리), 편측성 신경마비(1마리) 등의 부작용이 발생하였다. 이상의 결과를 토대로,

Keywords

References

  1. Ababou, R., Mclaughlin, D., Gelhar, L.W., and Tompson, A.F.B., 1989, Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media, Transp. Porous Media, 4, 549-565
  2. Attinger, S., Dentz, M., and Kinzelbach, W., 2002, Exact transversal macro dispersion coefficients for transport in heterogeneous porous media, ACTA Universitatis Carolinae-Geologica, 46(2/3), 117-119
  3. Bellin, A., Salandin, P., and Rinaldo, A., 1992, Simulation of dispersion in heterogeneous porous formations: statistics, first order theories, convergence of computations, Water Resour. Res., 28(9), 2211-2227 https://doi.org/10.1029/92WR00578
  4. Barry, D., Coves, A.J., and Sposito, G., 1988, On the Dagan model of solute transport in ground-water application to the Borden site. Water Resour. Res., 24(10), 1805-1817 https://doi.org/10.1029/WR024i010p01805
  5. Burr, D.T., Sudicky, E.A., and Naff, R.L., 1994, Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: Mean displacement, plume spreading, and uncertainty, Water Resour. Res., 30(3), 791-815 https://doi.org/10.1029/93WR02946
  6. Chin, D.A. and Wang, T., 1992, An investigation of the validity of first order stochastic dispersion theories in isotropic porous media, Water Resour. Res., 28(6), 1531-1542 https://doi.org/10.1029/92WR00666
  7. Cushman, J.H., 1990, Dynamics of Fluids in Hierarchical Porous Media, Academic. San Diego, Calif
  8. Cushman, J.H., Hu, B.X., and Ginn, T.R., 1994, Nonequilibrium statistical mechanics of preasymptotic dispersion, J. Stat. Phys., 75, 859-878 https://doi.org/10.1007/BF02186747
  9. Cvetkovic, V., Cheng, H., and Wen, X.H., 1996, Analysis of non-linear effects on tracer migration in heterogeneous aquifers using Lagrangian travel time statistics, Water Resour. Res., 32(6), 1671-1680 https://doi.org/10.1029/96WR00278
  10. Dagan, G., 1984, Solute transport in heterogeneous porous formations, J. Fluid Mech., 145, 151-177 https://doi.org/10.1017/S0022112084002858
  11. Dagan, G., 1987, Theory of solute transport by groundwater. Ann. Rev., Fluid Mech., 19, 183-215 https://doi.org/10.1146/annurev.fl.19.010187.001151
  12. Dagan, G., 1988, Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers, Water Resour. Res., 24(9), 1491-1500 https://doi.org/10.1029/WR024i009p01491
  13. Dagan, G., 1989, Flow and Transport in Porous Formations, Springer-Verlag, Berlin Heidelberg, Germany
  14. Dagan, G., 1990, Transport in heterogeneous porous formations: Spatial moments, ergodicity, and effective dispersion, Water Resour. Res., 26(6), 1281-1290 https://doi.org/10.1029/WR026i006p01281
  15. Dagan, G., 1991, Dispersion of a passive solute in non-ergodic transport by steady velocity fields in heterogeneous formations, J. Fluid Mech., 233, 197-210 https://doi.org/10.1017/S0022112091000459
  16. Dagan, G., 1994, An exact non-linear correction to transverse macrodispersivity for transport in heterogeneous formations, Water Resour. Res., 30(10), 2699-2705 https://doi.org/10.1029/94WR00904
  17. Dagan, G., 1995, Comment on 'Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: Mean displacement, plume spreading, and uncertainty' by T.D. Burr, E.A. Sudicky, and R.L. Naff., Water Resour. Res., 31(5), 1439-1441 https://doi.org/10.1029/95WR00090
  18. Dentz, M., Kinzelbach, H., Attinger, S., and Kinzelbach, W., 2000a, Temporal behavior of a solute cloud in a heterogeneous porous medium, 1. Point-like injection, Water Resour. Res., 36, 3591-3604 https://doi.org/10.1029/2000WR900162
  19. Dentz, M., Kinzelbach, H., Attinger, S., and Kinzelbach, W., 2000b, Temporal behavior of a solute cloud in a heterogeneous porous medium, 2. Spatially extended injection, Water Resour. Res., 36, 3605-3614 https://doi.org/10.1029/2000WR900211
  20. Dentz, M., Kinzelbach, H., Attinger, S., and Kinzelbach, W., 2002, Temporal behavior of a solute cloud in a heterogeneous porous medium, 3. Numerical simulations, Water Resour. Res., 38, 23-1-13
  21. Federico, V.D. and Zhang, Y.K., 1999, Solute transport in heterogeneous porous media with long-range correlations, Water Resour. Res., 35(10), 3185-3192 https://doi.org/10.1029/1999WR900021
  22. Garabedian, S.P., Leblanc, D.R., Gelhar, L.W., and Celia, M.A., 1991, Large-scale natural gradient tracer test in sand and gravel, Cape Code, Massachusetts. 2. Analysis of Spatial moments for a non-reactive tracer, Water Resour. Res., 27(5), 911-924 https://doi.org/10.1029/91WR00242
  23. Gelhar, L.W. and Axness, C.L., 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res., 19(1), 161-180 https://doi.org/10.1029/WR019i001p00161
  24. Gelhar, L.W., 1993, Stochastic Subsurface Hydrology, Prentice-Hall. Englewood Cliffs, New Jersery
  25. Hassan, A., Cushman, J.H., and Delleur, J.W., 1998, A Monte Carlo assessment of eulerian flow and transport perturbation models, Water Resour. Res., 34, 1143-1163 https://doi.org/10.1029/98WR00011
  26. Hassan, A., Andricevic, R., and Cvetkovic, V., 2002, Evaluation of analytical solute discharge moments using numerical modeling in absolute and relative dispersion frameworks, Water Resour. Res., 38, 1-1-8
  27. Hsu, K.C., Zhang, D., and Neuman, S.P., 1996, Higher-order effects on flow and transport in randomly heterogeneous porous media, Water Resour. Res., 32(3), 571-582 https://doi.org/10.1029/95WR03492
  28. Hubbard, S., Chen, J., Peterson, J., Majer, E.L., Willianms, K.H., Swift, D.J., Mailloux, B., and Rubin, Y., 2001, Hydrogeological characterization of the South Oyster vacterial transport site suing geophysical data, Water Resour. Res., 37(10), 2431-2456 https://doi.org/10.1029/2001WR000279
  29. Killey, R.W.D. and Moltyaner, G.L., 1988, Twin lake tracer tests: setting methodology, and hydraulic conductivity distribution, Water Resour. Res., 24(10), 1585-1612 https://doi.org/10.1029/WR024i010p01585
  30. Kitanidis, P.K., 1988, Prediction by the method of moments of transport in a heterogeneous formation, Jour. Hydrology, 102(14), 453-473 https://doi.org/10.1016/0022-1694(88)90111-4
  31. Mackay, D.M., Freyberg, D.L., Roberts, P.V., and Cherry, J.A., 1986, A natural gradient experiment in a sand aquifer, 1. Approach and overview of plume movement, Water Resour. Res., 22, 2017-2030 https://doi.org/10.1029/WR022i013p02017
  32. McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional finite-difference groundwater flow model, Techniques of Water-Resources Investigations 06-A1, USGS, 576
  33. Neuman, S.P., Winter, C.L., and Newman, C.M., 1987, Stochastic theory of field-scale fickian dispersion in anisotropic porous media, Water Resour. Res., 23, 453-466 https://doi.org/10.1029/WR023i003p00453
  34. Neuman, S.P. and Zhang, Y.K., 1990, A quasi-linear theory of non-Fickian and Fickian sub-surface dispersion, 1, Theoretical analysis with application to isotropic media, Water Resour. Res., 26(5), 887-902
  35. Pollock, D.W., 1994, User's guide for MODPATH/MODPATHPLOT, Version 3: A particle tracking post-processing package for MODFLOW, The U.S. Geological Survey finite-difference ground-water flow model, U.S. Geological Survey, Open-File Report, 94-464
  36. Quinodoz, H.A.M. and Valocchi, J., 1990, Macrodispersion in heterogeneous aquifers: Numerical experiments. In: Moltyaner, G.(ed.) International conference and workshop on transport and mass exchange processes in sand and gravel aquifers: field and modeling studies, AGU, Ottawa, Ont., Canada
  37. Rajaram, H. and Gelhar, L.W., 1993, Plume scale-dependent dispersion in heterogeneous aquifer, 1. Lagrangian analysis in a stratified aquifer, Water Resour. Res., 29(9), 3249-3260 https://doi.org/10.1029/93WR01069
  38. Robin, M.J.L., Gutjahr, A.L., Sudicky, E.A., and Wilson, J.L., 1993, Cross-correlated random field generator with direct Fourier transform method, Water Resour. Res., 29(7), 2385-2397 https://doi.org/10.1029/93WR00386
  39. Rubin, Y. and Dagan, G., 1988, Stochastic analysis of boundaries effects on head spatial variability in heterogeneous aquifers, 1. Constant head boundary, Water Resour. Res., 24(10), 1689-1697 https://doi.org/10.1029/WR024i010p01689
  40. Rubin, Y. and Dagan, G., 1989, Stochastic analysis of boundaries effects on head spatial variability in heterogeneous aquifers, 2. Impervious bondaries, Water Resour. Res., 25(4), 707-712 https://doi.org/10.1029/WR025i004p00707
  41. Rubin, Y., 1990, Stochastic modeling of macrodispersion in heterogeneous porous media, Water Resour. Res., 26(1), 133-141 https://doi.org/10.1029/WR026i001p00133
  42. Salandin, P., Rinaldo, A., and Dagan, G., 1991, A note on transport in stratified formations by flow tilted with respect to the bedding, Water Resour. Res., 27(11), 3009-3017 https://doi.org/10.1029/91WR01937
  43. Salandin, P. and Fiorotto, V., 1993, Numerical simulations of non-ergodic transport in natural formations, Proc. XXV IAHR, Tokyo, 55-62
  44. Selroos, J.O. and Cvetkovic, V., 1994, Mass flux statistics of kinetically sorbing solute in heterogeneous aquifer: Analytical solution and comparison with simulation, Water Resour. Res., 30(1), 63-69 https://doi.org/10.1029/93WR02654
  45. Selroos, J.O., 1995, Temporal moments for non-ergodic solute transport in heterogeneous aquifers, Water Resour. Res., 31(7), 1705-1712 https://doi.org/10.1029/95WR00945
  46. Sudicky, E.A. and Naff, R.L., 1995, Reply, Water Resour. Res., 31(5), 1443-1444 https://doi.org/10.1029/95WR00091
  47. Tompson, A.F.B. and Gelhar, L.W., 1990, Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media, Water Resour. Res., 25(10), 2541-2562
  48. Zhang, D. and Neuman, S.P., 1995, Eulerian-Lagrangian analysis of transport conditioned on hydraulic data, 3. Spatial moments, travel time distribution, mass flow rate, and cumulative release across a compliance surface, Water Resour. Res., 31(1), 65-75 https://doi.org/10.1029/94WR02236
  49. Zhang, Q., 1995, Transient behavior of mixing induced by a random velocity field, Water Resour. Res., 31(3), 577-591 https://doi.org/10.1029/94WR02275
  50. Zhang, Y.K. and Neuman, S.P., 1990, A quasi-linear theory of non-Fickian and Fickian sub-surface dispersion, 2. Application to anisotropic media and the Borden site, Water Resour. Res., 26(5), 903-914
  51. Zhang, Y.K. and Chi, J.A., 1995, An evaluation of nonlinearity in spatial second moments of ensemble mean concentration in heterogeneous porous media, Water Resour. Res. 31(12), 2991-3005 https://doi.org/10.1029/95WR02714
  52. Zhang, Y.K., Zhang, D., and Lin, J., 1996, Non-ergodic solute transport in three-dimensional heterogeneous isotropic aquifers, Water Resour. Res., 32(9), 2955-2963 https://doi.org/10.1029/96WR01467
  53. Zhang, Y.K. and Zhang, D., 1997, Time-dependent dispersion of non-ergodic plumes in two-dimensional heterogeneous porous media, J. Hydrologic Engineering, 2(2), 91-94 https://doi.org/10.1061/(ASCE)1084-0699(1997)2:2(91)
  54. Zhang, Y.K. and Federico, V.D., 1998, Solute transport in three-dimensional heterogeneous media with a Gaussian covariance of log hydraulic conductivity, Water Resour. Res., 34(8), 1929-1934 https://doi.org/10.1029/98WR01142
  55. Zhang, Y.K. and Lin, J., 1998, Numerical simulations of transport of non-ergodic plumes in heterogeneous aquifers, Stochastic Hydrology and Hydraulics, 12(2), 117-140 https://doi.org/10.1007/s004770050013
  56. Zhang, Y.K. and Federico, D.V., 2000, Nonergodic solute transport in heterogeneous porous media: Influence of multiscale structure, in Zhang, D., and Winter, C.L., eds., Theory, Modeling, and Field Investigation in Hydrogology: A Special Volume in Honor of Shlomo P. Neuman's 60th Birthday Boulder, Colorado, Geological Sociery of America Special Paper, 348, 61-72
  57. Zhang, Y.K. and Seo, B., 2004, Numerical simulations of non-ergodic solute transport in three-dimensional heterogeneous porous media. Stochastic Environmental Research and Risk Assessment, 18: 205-215 https://doi.org/10.1007/s00477-004-0178-4