Role of Advanced Glycation End Products in TGF-β1 and Fibronectin Expression in Mesangial Cells Cultured under High Glucose

  • HA Hunjoo (Ewha Womans University College of Pharmacy, Hyonam Kidney Laboratory, Soon Chun Hyang University) ;
  • KIM Hwa-Jung (Ewha Womans University College of Pharmacy) ;
  • LEE Hi Bahl (Hyonam Kidney Laboratory, Soon Chun Hyang University)
  • Published : 2005.09.01

Abstract

Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications including nephropathy. However, the role of AGE in the activation of mesangial cells cultured under high glucose has not been elucidated. The effects of aminoguanidine, which prevents formation of AGE and protein cross-linking, on the synthesis of $TGF-{\beta}1$ and fibronectin by rat mesangial cells cultured under high glucose for 2 weeks were examined and compared with the effects of $N^G$-nitro-L-arginine methyl ester (NAME), a selective nitric oxide synthase inhibitor, because aminoguanidine also inhibits the inducible nitric oxide synthase. Culture of mesangial cells in 30 mM (high) glucose for 2 weeks induced 1.5-fold (ELISA) and 1.9-fold (Western blot analysis) increase in AGE in the culture media compared to 5.6 mM (control) glucose. Northern blot analysis revealed 1.5-fold increase in $TGF-{\beta}1$ and 1.7-fold increase in fibronectin mRNA expression in cells cultured under high glucose compared to control glucose. Increases in mRNA expression were followed by increased protein synthesis. Mink lung epithelial cell growth inhibition assay revealed 1.4-fold increase in $TGF-{\beta}1$ protein in high glucose media compared to control. Fibronectin protein also increased 2.1-fold that of control glucose by Western blot analysis. Administration of aminoguanidine suppressed AGE formation in a dose dependent manner and at the same time suppressed $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells cultured in both control and high glucose. In contrast, NAME did not affect high glucose-induced changes. These findings support a role for AGE in high glucose-induced upregulation of $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells.

Keywords

References

  1. Bleyer, A. J., Fumo, P., Snipes, E. R., Goldfarb, S., Simmons, D. A., Ziyadeh, F. N. (1994). Polyol pathway mediates high glucose-induced collagen synthesis in proximal tubules. Kidney Int. 42, 659-666
  2. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Brownlee, M., Cerami, A., Vlassara, H. (1988). Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 318, 1315-1321 https://doi.org/10.1056/NEJM198805193182007
  4. Brownlee, M. (1995). Advanced protein glycosylation in diabetes and aging. Ann. Rev. Med. 46, 223-224 https://doi.org/10.1146/annurev.med.46.1.223
  5. Chornczynski, P., Sacchi, N. (1989). Single-step method of RNA isolation by acid guanidium thiocyanate-phenolchloroform extraction. Anal. Biochem. 162, 156-160
  6. Corbett, J. A., McDaniel, M. L. (1996). Selective inhibition of inducible nitric oxide synthase by aminoguanidine. Methods in Enzymol. 268, 398-408 https://doi.org/10.1016/S0076-6879(96)68042-2
  7. Corbett, J. A., Tilton, R. G., Chang, K., Hasan, K. S., Ido, Y., Wang, J. I., Sweetland, M. A., Lancaster, J. R., Williamson, J. R., McDaniel, M. L. (1992). Aminoguanidine, a novel inhibition of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes 41, 552-556 https://doi.org/10.2337/diabetes.41.4.552
  8. Craven, P. A., Derubertis, F. R., Melhem, M. (1997). Nitric oxide in diabetic nephropathy. Kidney Int. 52 [Suppl 60], S46-S53
  9. Craven P. A., Studer R. K., Felder J., Phillips S., Derubertis F. R. (1997) Nitric oxide inhibition of transforming growth factorbeta and collagen synthesis in mesangial cells. Diabetes 46, 671-681 https://doi.org/10.2337/diabetes.46.4.671
  10. Doi, T., Vlassara, H., Kirstein, M., Yamada, Y., Striker, G. E., Striker L. J. (1992). Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 89, 2873-2877
  11. Giardino, I., Edelstein, D., Brownlee, M. (1996). BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J. Clin. Invest. 97, 1422-1428 https://doi.org/10.1172/JCI118563
  12. Giardino, I., Edelstein, D., Brownlee, M. (1994). Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. a model for intracellular glycosylation in diabetes. J. Clin. Invest. 94, 110-117 https://doi.org/10.1172/JCI117296
  13. Ha, H., Kamanna, V. S., Kirschenbaum, M. A., Kim, K. H. (1997) Role of glycated low density lipoprotein in mesangial extracellular matrix synthesis. Kidney Int. 52 [Suppl 60], S54-S59
  14. Ha, H., Lee, S. H., Kim, K. H. (1997). Effects of rebamipide in a model of experimental diabetes and on the synthesis of transforming growth factor-$\beta$ and fibronectin, and lipid peroxidation induced by high glucose in cultured mesangial cells. J. Pharmacol. Exp. Ther. 281, 1457-1462
  15. Harper, P. A., Robinson, J. M., Hoover, R. L., Wright, T. C., Karnovsky, M. J. (1984). Improved methods for culturing rat glomerular cells. Kidney Int. 26, 875-880 https://doi.org/10.1038/ki.1984.231
  16. Heby, O., Persson, L. (1990). Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem. Sci. 15, 153-158 https://doi.org/10.1016/0968-0004(90)90216-X
  17. Hoffman, B. B., Sharma, K., Zhu, Y., Ziyadeh, F. N. (1998). Transcriptional activation of transforming growth factor-$\beta1$ mesangial cell culture by high glucose concentration. Kidney Int. 54, 1107-1116 https://doi.org/10.1046/j.1523-1755.1998.00119.x
  18. King, G. L., Ishii, H., Koya, D. (1997). Diabetic vascular dysfunction: A model of excess activation of protein kinase C. Kidney Int. 52 [Suppl 60], S77-S85
  19. Kolm-Litty, V, Sauer, U., NerJich, A., Lehmann, R., Schleicher, E. D. (1998). High glucose-induced transforming growth factor beta 1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest. 101, 160-169 https://doi.org/10.1172/JCI119875
  20. Lee, H. B., Cha, M. K., Song, K. I., Kim, J. H., Lee, E. Y., Kim, S. I., Kim, J., Yoo, M. H. (1997). Pathogenic role of advanced glycosylation end products in diabetic nephropathy. Kidney Int. 52 [Suppl 60], S60-S65 https://doi.org/10.1038/ki.1997.304
  21. Makino, H., Shikata, K., Hironaka, K., Kushiro, M., Yamasaki, Y., Sugimoto H., Ota Z., Akari N., Horiuchi S. (1995). Ultrastructure of nonenzymatically glycated mesangial matrix in diabetic nephropathy. Kidney Int. 48, 517-526 https://doi.org/10.1038/ki.1995.322
  22. Makita, Z., Vlassara, H., Cerami, A., Bucala, R. (1992). Immunochemical detection of advanced glycosylation end products in vivo. J. Biol. Chem. 267, 5133-5138
  23. Mitsuhashi, T., Nakayama, H., Itoh, T., Kuwajima, S., Aoki, S., Atsumi, T., Koike, T. (1993). Immunochemical detection of advanced glycation end products in renal cortex from STZ-induced diabetic rats. Diabetes 42, 826-832 https://doi.org/10.2337/diabetes.42.6.826
  24. Miyata, S., Monnier, V. (1992). Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J. Clin. Invest. 89, 1102-1112 https://doi.org/10.1172/JCI115690
  25. Oh, J. H., Ha, H., Yu, M. R., Lee, H. B. (1998). Sequential effects of high glucose on mesangial cell transforming growth factor-$\beta1$ and fibronectinin synthesis. Kidney Int. 54, 1872-1878 https://doi.org/10.1046/j.1523-1755.1998.00193.x
  26. Pricci, F., Pugliese, G., Mene, P., Romeo, G., Romano, G., Galli, G., Casini, A., Rotella, C. M., Mario U. D., Pugliese F. (1996). Regulatory role of eicosanoids in extracellular matrix overproduction induced by long-term exposure to high glucose in cultured rat mesangial cells. Diabetologia 39, 1055-1062 https://doi.org/10.1007/BF00400654
  27. Pugliese, G., Pricci, F., Locuratolo, N., Romeo, G., Romano, G., Giannini, S., Cresci, B., Galli, G., Rotella, C. M., Di Mario, U. (1996). Increased activity of the insulin-like growth factor system in mesangial cell cultured in high glucose conditions. Relation to glucose-enhanced extracellular matrix production. Diabetologia 39, 775-784 https://doi.org/10.1007/s001250050510
  28. Pugliese, G., Pricci, F., Romeo, G., Pugliese, F., Mene, P., Giannini, S., Cresci, B., Galli, G., Rotella, C. M., Vlassara, H., Di Mario, U. (1997). Upregulation ofmesangial growth factor and extracellular matrix synthesis by advanced glycation end products via a receptor-mediated mechanism. Diabetes 46, 1881-1887 https://doi.org/10.2337/diabetes.46.11.1881
  29. Shinohara, M., Thomalley, P. J., Giardino, I., Beisswenger, P., Thorpe, S. R., Onorato, J., Brownlee, M. (1998). Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest. 101, 1142-1147 https://doi.org/10.1172/JCI119885
  30. Skolnik, E. Y., Yang, Z., Makita, Z., Radoff, S., Kirstein, M., Vlassara, H. (1991). Human and rat mesangial cell receptors for glucose-modified proteins: Potential role in kidney tissue remodeling and diabetic nephropathy. J. Exp. Med. 174, 931-939 https://doi.org/10.1084/jem.174.4.931
  31. Soulis, T., Cooper, M. E., Sastra, S., Thallas, V., Panagiotopoulos, S., Bjerrum, O. J., Jerurns, G. (1997). Relative contributions of advanced glycation and nitric oxide synthase inhibition to aminoguanidine-mediated renoprotection in diabetic rat. Diabetologia 40, 1141-1151 https://doi.org/10.1007/s001250050799
  32. Steffes, M. W., Osterby, R, Chavers, B., Mauer, S. M. (1989). Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 38, 1077-1081 https://doi.org/10.2337/diabetes.38.9.1077
  33. Stitt, A. W., Chakravarthy, U., Archer, D. B., Gardiner, T. A. (1995). Increased endocytosis in retinal vascular endothelial cells grown in high glucose medium is modulated by inhibitors of nonenzymatic glycosylation. Diabetologia 38, 1271-1275 https://doi.org/10.1007/BF00401758
  34. Thornally, P. J. (1998). Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell. Mol. Biol. 44, 1013-1023
  35. Tilton, R. G., Chang, C., Hasan, K. S., Smith, S. R., Petrash, M., Misko, T. P., Moore, M. M., Currie, M. G., Corbett, J. A., McDaniel, M. L., Williamson, J. R. (1993). Prevention of diabetic vascular dysfunction by guanidine. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes 42, 221-232 https://doi.org/10.2337/diabetes.42.2.221
  36. Tomino, Y., Wang, L. N., Fukui, M., Yaguchi, Y, Koide, H. (1991). Glomerular nonenzymatic glycosylation and lipid peroxide are increased in the early phase of streptozotocininduced diabetic rats prior to major histopathologic alterations. Nephron 59, 632-636 https://doi.org/10.1159/000186656
  37. Trachtman, H., Futterweit, S., Singhal, P. (1995). Nitric oxide modulates the synthesis of extracellulaar matrix proteins in cultured rat mesangial cells. Biochem. Biophys. Res. Comm. 207, 120-125 https://doi.org/10.1006/bbrc.1995.1161
  38. Trachtman, H., Futterwit, S., Crimmins, D. L. (1997). High glucose inhibits nitric oxide production in cultured rat mesangial cells. J. Am. Soc. Nephrol. 8, 1276-1282
  39. Tsang, V. C. W., Peralta, J. M., Simons, A. R. (1983). Enzymelinked immunoelectro- transfer blot technique for studying the specificities of antigens and antibodies separated by gel electrophoresis. Methods in Enzymol. 92, 377-391 https://doi.org/10.1016/0076-6879(83)92032-3
  40. Vlassara, H., Striker, L. J., Teichberg, S., Fuh, H., Li, Y. M., Steffer, M. (1994). Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc. Natl. Acad. Sci. USA 91, 11704-11708
  41. Yang, C.-W., Hatteri, M., Vlassara, H., He, C.-J., Carome, M. A., Yamato E., Elliot S., Striker G. E., Striker L. J. (1995). Overex-pression of transforming growth factor-$\beta1$ mRNA is associated with up-regulation of glomerular tenascin and laminin gene expression in nonobese diabetic mice. J. Am. Soc. Nephrol. 5, 1610-1617
  42. Yang, C.-W., Vlassara, H., Peten, E. P., He, C.-J., Striker, G. E., Striker L. J. (1994). Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc. Natl. Acad. Sci. USA 91, 9436-9440
  43. Yang, C.-W., Vlassara, H., Striker, G. E., Striker, L. J. (1995). Administration of AGE in vivo induces genes implicated in diabetic glomerulosclerosis. Kidney Int. 47 [Suppl 49], S55-S58
  44. Yu, P. H., Zuo, D.M. (1997). Aminoguanidine inhibits semicarbazidesensitive amine oxidase activity: Implications for advanced glycation and diabetic compliations. Diabetologia 40, 1243-1250 https://doi.org/10.1007/s001250050816
  45. Ziyadeh, F. N., Han, D. C. (1997). Involvement of transfonning growth factor-$\beta$ and its receptors in the pathogenesis of diabetic nephropathy. Kidney Int. 52 [Suppl 60], S7-S11.