Enhancement of Antigen Presentation Capability of Dendritic Cells and Activation of Macrophages by the Components of Bifidobacterium pseudocatenulatum SPM 1204

  • HAN Shinha (Department of Biology, Seoul Women's University) ;
  • CHO Kyunghae (Department of Biology, Seoul Women's University) ;
  • LEE Chong-Kil (College of Pharmacy, Chungbuk National University) ;
  • SONG Youngcheon (Department of Pharmacy, Sahmyook University) ;
  • PARK So Hee (Department of Pharmacy, Sahmyook University) ;
  • HA Nam-Joo (Department of Pharmacy, Sahmyook University) ;
  • KIM Kyungjae (Department of Pharmacy, Sahmyook University)
  • Published : 2005.09.01

Abstract

Antigen presenting cells (APCs), dendritic cells (DCs) and macrophages, playa critical role not only in the initiation of immune responses, but also in the induction of immune tolerance. In an effort to regulate immune responses through the modulation of APC function, we searched for and characterized APC function modulators from natural products. Bifidobacterium pseudocatenulatum SPM1204 (SPM1204) isolated from feces of healthy Korean in the age of 20s was used in this experiment. DCs and macrophages were cultured in the presence of supernatants of SPM 1204 and then examined for their activities for the presentation exogenous antigen in association with major histocompatibility complexes (MHC) and macrophage activation. SPM1204 increased class I MHC-restricted presentation of exogenous antigen (cross-presentation) in a DC cell line, DC2.4 cells. The RAW 264.7 cell line was used to test the nonspecific effect of immune reinforcement of SPM1204 as a source of biological regulating modulator for the macrophage activation, include nitric oxide (NO) production and cytokine production. Results showed that the production of NO, tumor necrosis factor (TNF)-$\alpha$, interleukin 1 (IL-1)-$\beta$ and morphological changes in macrophages were largely affected by SPM1204 in a dose-dependent manner. Our results demonstrated that SPM1204 promote cross-presentation of dendritic cells as well as the induction of NO, TNF-$\alpha$ production, and activation of macrophage.

Keywords

References

  1. Abbas, A. K., Lichrman, A. H., Pobe, J. S. (1994). Cytokines: Cellular and Molecular Immunology, second ed., pp. 240 W. B. Saunders Co., Philadelphia, PA
  2. Bea, E. A., Kim, D. H., Han, M. J., Park, H. Y., Choi, E. C. (1998). Inhibitory effects of Bifidobacterium spp. isolated from a healthy Korean on harmful enzymes of human intestinal microflora. Arch. Pharm. Res. 21, 54-61 https://doi.org/10.1007/BF03216753
  3. Cavaillon, J. M. (1994). Cytokines and macrophages. Biomed. Pharmacother. 48, 445-453 https://doi.org/10.1016/0753-3322(94)90005-1
  4. Duffy, L. C., Zielezny, M. I., Riepenhoff-Talty, M., Dxyja, D. (1994). Sayahtaheri-Altaie S, Griffiths E, Ruffin D, Barrett H, Rossman J, Organ PL. Effectiveness of Bifidobaterium bifidum in mediating the clinical course of murine rotavirus diarrhea. Pediatr. Res. 35, 690-695 https://doi.org/10.1203/00006450-199406000-00014
  5. Gopal, A., Shah, N. P., Roginski, H. (1996). Bile tolerance, taurochloate deconjugation and cholesterol removal by Lactobacillus acidophilius and bifidobacterium. Milchwissenschaft. 51, 619-623
  6. Han, M. J., Park, H. Y., Kim, D. H. (1999). Protective effects of Bifidobacterium spp. On experimental colon carcinogenesis with 1,2-dimethylhydrazine. J. Microbiol. Biotechnol. 9, 368-370
  7. Hatcher, G. E., Lambrecht, R. S. (1993). Augmentation of macro phage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy Sci. 76, 2485-2492 https://doi.org/10.3168/jds.S0022-0302(93)77583-9
  8. Homma, N., (1998). Bifidobacteria as a resistance factor in human beings. Bifidobact. Microfl. 7, 35-43
  9. Hosono, A., Lee, J., Ametani, A., Natsume, M., Hirayama, M., Adachi, T., Kaminogawa, S. (1997). Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobaterium adolescentis M 101-4. Biosci. Biotech. Biochem. 61, 312-316 https://doi.org/10.1271/bbb.61.312
  10. Hughes, D. B., Hoover, D. G. (1991). Bifidobacteria; their potential for use in American dairy products. Food. Technol. 45, 74-83
  11. Kado-Oka, Y., Fujiwara, S., Hirota, T. (1991). Effects of bifidobacteria cells on monogenesis response of splenocytes and several functions of phagocytes. Milchwissenshaft. 46, 626-630
  12. Kim, K. M., Kwon, Y. G., Chung, H. T., Yun, Y. G., Pae, H. O., Han, J. A., Ha, K. S., Kim, T. W., Kim, Y. M. (2003). Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing $NF-\kappaB$ activation. Toxicology and applied pharmacology. 190, 1-8 https://doi.org/10.1016/S0041-008X(03)00152-2
  13. Kovacsovics-Bankowski, M., Clark, K., Benacerraf, B., Rock, K. L. (1993). Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl. Acad. Sci. UAS 90, 4942-4946
  14. Kumann, J. A., Raric, J. L. (1998). The health potential of products containing bifidobacteria. In: Robinson, RK. (Ed.), Therapeutic Properties of Fermented Milks. pp.117 Elsevier Appl. Sci. London, England
  15. Lee, J., Ametani, A., Enomoto, A., Sato, Y., Motoshima, H., Ike, F., Kaminogawa, S. (1993). Screening for the immunopotentiating activity of food microorganisms and enhancement of the immune response by Bifidobaterium adolescentis M101-4. Biosci. Bitotech. Biochem. 57, 2127-2132 https://doi.org/10.1271/bbb.57.2127
  16. Link-Amster, H., Rochat, F., Saudan, K. Y., Mignot, O., Aeshlimann, J. M. (1994). Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol. Med. Microbiol. 10, 55-64 https://doi.org/10.1111/j.1574-695X.1994.tb00011.x
  17. Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Sayder, S. H., Russell, S. W. (1993). Expression of the nitric oxide synthase gene in the mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J. Biol. Chem. 268, 1908-1913
  18. Mitsuoka, T. (1982). Recent trends in research on intestinal flora. Bifidobact. Microfl. 1, 3-24 https://doi.org/10.12938/bifidus1982.1.1_3
  19. Mitsuoka T. (1994) Taxonomy and ecology of bifidobacteria. Bifidobact. Microfl. 3, 11-28
  20. Rafter, J. J. (1999). The role of lactic acid bacteria in colon cancer prevention. Scand. J Gastroenterol. 30, 497-502 https://doi.org/10.3109/00365529509089779
  21. Roy, D., Ward, P. (1990). Evaluation ofrapid methods for differentiation of bifidobacterium species. J. Appl. Bacteriol. 69, 739-749 https://doi.org/10.1111/j.1365-2672.1990.tb01571.x
  22. Sasaki, T., Fukami, S., Namioka, S. (1994). Enhanced resistance of mice to Escherichia coli infection induced by administration of peptidoglycan derived from Bifidobaterium thermo philum. J. Vet. Med. Sci. 53, 433-437
  23. Sekine, K., Watanabe-Sekine, E., Toida, T., Kasashima, T., Kataoka, T., Hashimoto, Y. (1994).Adjuvant activity of the cell wall of Bifidobacterium infantis for in vivo immune responses in mice. Immunopharmacol. Immunotoxicol. 16, 589-609 https://doi.org/10.3109/08923979409019741
  24. Shen, Z., Reznikoff, G., Dranoff, G., Rock, K. L.(1997). Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723-2730
  25. Stuehr, D. J., Nathan, C. F. (1989). Nitric oxide, a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169, 1543-1555 https://doi.org/10.1084/jem.169.5.1543
  26. Takahashi, T., Oka, T., Iwana, H., Kuwata, T., Yamamoto, Y. (1993). Immune response of mice to orally administered lactic acid bacteria Biosci. Biotech. Biochem. 57, 1557-1560 https://doi.org/10.1271/bbb.57.1557
  27. Yamazaki, S., Tsuyuki, S., Akashiba, H., Kamimura, H., Kimuura, M., Kawashima, T., Ueda, K. (1991). Immune response of Bifidobaterium-monoassociated mice. Bifidobact. Microfl. 10, 19-31 https://doi.org/10.12938/bifidus1982.10.1_19
  28. Yasui, H., Ohwaki, M. (1991). Enhancement of immune response in Peyer's patch cells cultured with Bifidobaterium breve. J. Dairy Sci. 74, 1187-1195 https://doi.org/10.3168/jds.S0022-0302(91)78272-6
  29. Yasui, H., Nagaoka, N., Mike, A., Hayakawa, K., Ohwaki, M.. (1992). Detection of Bifidobaterium strains that induce large quantities of IgA. Microbial. Ecol. Health Dis. 5, 155-162 https://doi.org/10.3109/08910609209141310
  30. Yeh, K. Y., McAdam, A. J., Pulaski, B. A., Shastri, N., Frelinger, J. G., Lord, E. M. (1998). IL-3 enhances both presentation of exogenous particulate antigen in association with class I major histocompatibility antigen and generation of primary tumorspecific cytolytic T lymphocytes. J. Immunol. 160, 5773-5780